BCCMS  /  CMS  /  People  /  A. da Rosa

Dr. rer. nat. Andreia Luisa da Rosa

Head of the Semiconductor Nanomaterials Group

Contact:

Bremen Center for Computational Materials Science
University Bremen
TAB Building, Entrance A, Room 3.02
28359 Bremen, Germany
Phone: +49 (0) 218 4580
Fax: +49 (0) 421 218 4764
Email: darosa[at]bccms.uni-bremen.de

 

 

 

Curriculum Vitae

People

Post-docs

Michael Lorke

Previous members

Ney H. Moreira (Bosch, Stuttgart)

Daniela Kunst (ZARM, Uni Bremen)

W. Fan (guest student, Prof. R. Q. Zhang group, City University HK) 

Hu Xu (guest student, Prof. R. Q. Zhang group, City University HK)

Dangqi Fan (guest student, R. Q. Zhang group, City University HK)

Adriel Dominguez García  (BCCMS)

 

Research Topics

ZnO nanowire

II-VI and III-V surfaces and nanostructures

Nanotechnology has become one of the most promising fields of research in various areas including electronics, optoelectronics, spintronics and bioelectronics. Nanodevices with a specific or various functionalities can be designed by capping the surface of nanostructures with organic molecules, biomolecules or thin films. The surface modifier can then be used to couple the electronic, electrical or optical properties of the nanostructures with molecular or biological features to achieve structures with new functionalities.

Our research is focused on:

  • Atomic, electronic and trabsport properties of wide band gap (ZnO, GaN, AlN) nanowires for electronic and opto-electronic applications
  • Functionalization of ZnO nanowires with organic and biological molecules for sensing applications.

 

 

 

 

Mn doped ZnO

Dilute magnetic semiconductors

The use of spin as information carrier is a promising route towards new device functionality and performance.  Efficient electrical injection, transport and manipulation of spin-polarized carriers are essential requirements for using the spin degree of freedom in future spintronic devices.  Because of their structural similarities with standard semiconductors and their large spin-polarization at the Fermi energy they are considered as ideal materials for spin injection into semiconductors.
We are currently investigating transition metal doped ZnO and GaN.

Hybrid Semiconductors

Tailored nanodevices with a specific
or various functionalities can be designed by capping the surface of
nanostructures with organic molecules, biomolecules or thin films. The
surface modifier can then be used to couple the electronic, electrical
or optical properties of the nanostructures with molecular or
biological features to achieve hybrid structures with new
functionalities.   In this project
we will employ density functional theory to investigate hybrid
semiconductor nanostructures via surface
modification with organic molecules.  

 

 

List of publications

2012

39. T. Kaewmaraya, B. Pathak, C. M. Araujo, A. L. Rosa and R. Ahuja, Water adsorption on ZnO(10-10): The role of intrinsic defects, European Physics Letters 97, 17014 (2012)

38. X. Q. Shi, H. Xu, M.A. Van Hove, N.H. Moreira, A.L. Rosa and Th. Frauenheim, Substrate mediated stabilization of methylphosphonic acid on ZnO non-polar surfaces, Surf. Sci. 606, 289 (2012) (Original Research Article)

2011

 

37. F. Silvearv, S. Lebegue, A. L. Rosa and R. Ahuja, “An ab-initio study of (Mn,Al)
doped ZnO including strong correlation effects”, Physica E, accepted (2011)

36. Self-Consistent-Charge Density-Functional Tight-Binding Parameters for Cd–X (X = S, Se, Te) Compounds and Their Interaction with H, O, C, and N, S. Sarkar, S. Pal, P. Sarkar, A. L. Rosa and Th. Frauenheim, Journal of Chemical Theory and Computation (2011)

35. Glycine Adsorption on (10-10)-ZnO Surfaces, A. Dominguez, N. H. Moreira, G. Dolgonos et al., J. Phys. Chem. C 115,  6491 (2011)

2010

34.First-principles calculations of atomic and electronic properties of ZnO nanostructures,W. Fan, H. Xu, D. Fang, A. L. Rosa, R. Q. Zhang and Th. Frauenheim, phys. stat. sol (b) Feature Article, 247, 2581 (2010)
33. Native Defects in ZnO Nanowires: Atomic Relaxations, Relative Stability and Defect Healing with Organic Acids,N. H. Moreira, B. Aradi, A. L. Rosa and Th. Frauenheim, Journal of Physical Chemistry C 114, 18860 (2010)
32. Theoretical Exploration of Magnetism in ZnO Nanotubes with Vacancies, Antisites, and Nitrogen Substitutional Defects, D. Wang, A. L. Rosa, Th. Frauenheim and R. Q. Zhang, J. Phys. Chem. 114, 5760(2010)
31. N-doped ZnO nanowires: surface segregation, the effect of hydrogen passivation and applications in spintronics, H. Xu, A. L. Rosa, Th. Frauenheim and R. Q. Zhang, phys. stat. sol. 247, 2195 (2010)

2009

30. Hydrogen and oxygen adsorption on ZnO nanowires: A first-principles study, H. Xu and A. L. Rosa and Th. Frauenheim and R. Q. Zhang, Phys. Rev. B 79, 073402 (2009)
29. Covalent functionalization of ZnO surfaces: A density functional tight binding study, N. H. Moreira and A. L. Rosa and Th. Frauenheim, Appl. Phys. Lett. 94, 193109 (2009)
28. B. Yan and C. Yam and A. L. Rosa and Th. Frauenheim, Phys. Rev. Lett. 103, 189701 (2009).
27. Impurity scattering for quasi-one-dimensional state by impurity dimers on Si(001) surface: first-principles study, B. Yan, K. Tomatsu, B. Huang, A. L. Rosa, G. Zhou, B. L. Gu, W. Duan, F. Komori and Th. Frauenheim, Phys. Rev. B 79, 235437 (2009)
26. Band gap engineering of GaN nanowires by surface functionalization, D. Q. Fang, A. L. Rosa, Th. Frauenheim and R. Q. Zhang, Appl. Phys. Lett. 94, 073116 (2009)
25. Toward an accurate density-functional tight-binding description of zinc-containing compounds, N. H. Moreira, G. Dolgonos, B. Aradi, A. L. da Rosa and Thomas Frauenheim, Journal of Chemical Theory and Computation 5, 605 (2009)

2008

24. First-principles study of the structural stability and electronic properties of ZnS nanowires, Hu Xu, A. L. Rosa, Th. Frauenheim and R. Q. Zhang, J. Phys. Chem. C 112, 20291 (2008)
23. Resonant electron heating and molecular phonon cooling in single C60 junctions, G. Schulze, K. J. Franke, A. Gagliardi, G. Romano, C. S. Lin, A. L. Rosa, T. A. Niehaus, Th. Frauenheim, A. Di Carlo, A. Pecchia, and J. I. Pascual, Phys. Rev. Lett. 100, 136801 (2008)
22. First-principles study of the size-dependent structural and electronic properties of thick-walled ZnO nanotubes, Hu Xu, Fei Zhan, A. L. Rosa, Th. Frauenheim and R.Q. Zhang, Solid State Communications 148, 534 (2008)
21. Energetic and electronic properties of hydrogen passivated ZnO nanowires, Solid State Communications 148, 101 (2008)

2007

20. Structural and electronic properties of ZnO nanotubes from density-functional calculations, Hu Xu, R. Q. Zhang, Xiaohong Zhang, A. L. Rosa and Th. Frauenheim, Nanotechnology 18, 485713 (2007)
19. Weak ferromagnetism in Cu-doped GaN, A. L. Rosa and R. Ahuja, Appl. Phys. Lett. 91, 232109 (2007)
18. First-principles calculations of reconstructed [0001] ZnO nanowires,Wei Fan, Hu Xu, A. L. Rosa, Th. Frauenheim and R. Q. Zhang, Phys. Rev. B 76, 073302 (2007)
17. Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires, Hu Xu, A. L. Rosa, Th. Frauenheim, R. Q. Zhang and S. T. Lee, Appl. Phys. Lett. 91, 031914 (2007)
16. Tuning the ferromagnetism in Mn-Zn-O by intrinsic defects, A. L. Rosa and R. Ahuja, J. Phys.: Condens. Matter 19 386232 (2007)

2006

15. Ferromagnetism in Cu-doped ZnO from first-principles theory, L. Huang, A. L. Rosa and R. Ahuja, Phys. Rev. B 74, 075206 (2006)
14. Polarity inversion of GaN (0001) surfaces induced by Si adsorption, A. L. Rosa and J. Neugebauer, Surf. Sci. 600, 335 (2006)
13. Understanding Si adsorption on GaN (0001) surfaces using first-principles calculations, A. L. Rosa and J. Neugebauer, Phys. Rev. B 73, 205314 (2006)
12. First-principles calculations of structural and electronic properties of clean GaN (0001) surfaces, A. L. Rosa and J. Neugebauer, Phys. Rev. B 73, 205346 (2006)

Earlier publications

11. Structural and thermodynamic properties of water related defects in alpha-quartz, A. L. Rosa, A. A. El-Barbary, M. I. Heggie and P. R. Briddon, Phys. Chem. Minerals, 32, 323 (2005)
10. First Principles Calculations of Hydrogen Aggregation in Silicon, N. Martsinovich, A. L. Rosa, M. I. Heggie and P. R Briddon, Defects and Diffusion Forum. Defects and Diffusion in Semiconductors 230, 81 (2004)
9. Density-functional theory calculations on H defects in Si, N. Martsinovich, A. L. Rosa, M. I. Heggie, C. P. Ewels, and P. R. Briddon, Physica B 340, 654 (2003)
8. Adsorption and incorporation of silicon at GaN(0001) surfaces, A. L. Rosa, J. Neugebauer, J. E. Northrup, C.-D. Lee, and R. M. Feenstra, Appl. Phys. Lett. 80, 2008 (2002)
7. Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds, L. E. Ramos, L. K. Teles, L. M. R. Scolfaro, J. L. P. Castineira, A. L. Rosa, J. R. Leite, Phys. Rev. B 63, 165210 (2001)
6. Silicon on GaN (0001) and (000-1) surfaces, C. D. Lee, R. M. Feenstra, A. L. Rosa, J. Neugebauer, and J. E. Northrup, J. Vac. Sci. Technol. B 19, 1619 (2001)
5. Rigorous Hole Band structure calculations of p-type delta-doping quantum wells and superlattices in silicon, A. L. Rosa, L. M. R. Scolfaro, G. M. Sipahi, and J. R. Leite, Superlattices and Microstructures 25, 67 (1999)
4. p-type delta-doping quantum wells and superlattices in silicon: self-consistent hole potentials and band structure, A. L. Rosa, L. M. R. Scolfaro, R. Enderlein, G. M. Sipahi, and J. R. Leite, Phys. Rev. B 58, 15675 (1998)
3. Miniband structure and effective masses of n-type delta-doping superlattices in GaN, S. C. P. Rodrigues, A. L.Rosa, L. M. R. Scolfaro, D. Beliaev, J. R. Leite, R. Enderlein, and J. L. A. Alves, Semic. Sci. Technol. 13, 981 (1998)
2. Hole band structure of p-type delta-doping quantum wells in silicon, Microelectronic Engineering 43, 489 (1998)
1. On the interatomic correlations and mean square relative atomic displacements in an anharmonic simple cubic lattice, Modern Physics Letters B 10, 599 (1996)

Software documentation

Bachelor, Master Degree or PhD degree?

Computersimulationen von Halbleiter-Nanostrukturen:

 

Halbleiterforschung und Halbleitertechnologie stoßen in immer kleinere Dimensionen vor. Daher beschäftigt man sich derzeit intensiv mit der Erforschung alternativer Halbleitertechnologien im Nanometermaßstab. Neben den technologischen Aspekten sind die nanostrukturierten Halbleiter auch für die physikalische Grundlagenforschung äußerst interessant, da bei derartig kleinen Abmessungen Quanteneffekte auftreten. In diesem Projekt werden Simulationsmethoden benutzt, um strukturelle, elektronische und magnetische
Eingenschaften von Nanostrukturen wie Nanopunkte, Nanodrähte und Nanoröhrchen, für Technologieanwendungen zu untersuchen.

Computer simulations of semiconductor nanostructures:

Nanotechnology deals with structures of the size 100nm or smaller, and involves developing materials or devices within that size. Nanotechnology has the potential to create many new materials and devices with wide-ranging applications including for example electronics, optica and biosensing. In this project computer simulations of structural, electronic and magnetic properties of nanostructures such as Nanodots, nanowires and nanotubes for technological applications will be investigate.

 

For pursuing your bachelor, master or PhD degree, please contact me: darosa[at]bccms.uni-bremen.de.