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Outline

● General information

● Basic commands under Linux
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Scientific programming

Scientific programming = Implementation of numerical algorithms in a 
given programming language in order to solve scientific problems.

● Make a model

● Choose the right numerical algorithm

● Plan the program structure

● Define interfaces

● Implement the algorithms (coding)

● Test your implementation

● Document your code

● Extend, reuse your code

● Correctness

● Numerical stability

● Proper discretisation 
(error estimation!)

● Flexibility

● Efficiency (speed, 
memory, scaling, etc.)

Some famous numerical disasters:
http://www-users.math.umn.edu/~arnold/disasters/

http://www-users.math.umn.edu/~arnold/disasters/
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Content of the course

● Introduction into Unix/Linux

● Basic data types, arrays

● Control structures

● Input / Output handling

● Functions, modules, packages, data hiding

● Basics of object oriented programming

● Graphical output, plotting

● Version control (git), cooperative development

● Unit testing

● Source code documentation

● Code profiling and code optimisation

● Parallel programming (eventually)

We will cover following topics:

Literature: Slides + whatever you find about Python
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Unix in general

● Created 1969 (AT&T Bell Labs), originally written in assembler

● 1972: Rewrite from scratch in C (portability!)

● 70s, 80s: Unix gets popular in academics

● Most high performance computing (HPC) centers use Unix

● 1991: Linux Torwald starts to develop a Unix for i386-PC (Linux)

● 90s: Linux gets more and more popular on PCs.

Unix history in a nutshell

Unix has many flavours

● Linux (open source under GPL license)

● BSD (FreeBSD, NetBSD, OpenBSD, open source under BSD license)

● AIX (IBM, commercial)

● :

● Mac OS X (based on a BSD-derivative)

● Windows? (not yet, but Windows 10 has Linux subsystem)
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Advantages of Unix (for users)

Modular

● Operating system assembled from independent parts

● Often several alternatives for the same functionality

● Unix shell: sh, ksh, csh, tcsh, bash, zsh, ...

● Graphical environment: KDE, Gnome, LXDE, etc.

Communication and network oriented

Multi-tasking and multi-user capable by design

Contains efficient tools for many different tasks

● Tools can easily be combined with each other
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Communicating with the operating system

Graphical user interface (GUI)

● Low entry barrier

● Functionality somewhat limited (like under Windows…)

● Not always clear, what happens under the hood

Command line interface (Shell)

● Needs more knowledge (higher entry barrier)

● Very complex tasks possible

● Tasks are often easier formulated

 Typing one line instead of clicking 20 times…

➢ Closer to the operating system

● Easier to understand what is going on (esp. in case of errors)
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Unix shell

● Received

● Interpreted

● Executed

● Confirmed (e.g. error messages)

User commands are processed by the so called Shell 

Various different popular shells available:

● SH and BASH, CSH and TCSH, ZSH

● User experience slightly different

● Shell command syntax (shell programming) slightly different

● However, most commands we will use are shell-independent programs
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Let’s start!

Open a command line window (LXTerminal)

Type the command

Prompt

(shell waits for input)

Command

(submitted with Enter)

Response / Result

Prompt

(shell waits for input)

ls

Hit Enter
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Typical shell commands

Working with files

● Manipulating files (copy, rename, remove)

● Edit file content

● Extract information from a file

Start other programs, applications

● Editor

● Python-interpreter

● Any kind of application programs

Interact with the operating system

● Change permissions for a file

● Stop, suspend, restart running programs
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File system

● Hierarchical: All files are part of one single tree structure

● There is one single top node (root folder): / (NOT \!)

              /
home          usr           media
aradi      lib    bin       aradi
                            Kingston

/media/aradi/Kingston
● Levels in the tree separated by /

● Path of a file: how can it be reached from root

● No drive letters (A:, C:, etc.)

● Mobile devices appear in special directories when inserted – 
mounting a device (e.g. /media/aradi/Kingston)

● When device is removed, special directory disappears (unmounting)
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Important directories

HOME-directory

● Every user has an own special directory

● All user created files should be stored within that directory

● Permissions for access by other users can be changed

● Often (but not necessary) the directory /home/username

Directories with executable programs

● Contain the programs which can be executed by the user

● Typically /bin, /usr/bin, /usr/local/bin, etc.

Temporary directory (/tmp)

● Running programs store temporary data here

● Usually gets cleaned up at start up

● Never store anything permanent here!
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Current working directory 

Current working directory is usually shown at the prompt

User name Host name Current working directory

The character tilde (~) is the abbreviation for the HOME-directory

~/Documents = /home/aradi/Documents

Command pwd (print working directory) shows current folder:

pwd
/home/aradi/Documents

Command

Response (full path starting from /)
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Navigating in the directory tree

● Command cd (change directory) changes between directories

cd Documents
cd ../
cd /home
cd aradi/Documents
cd
cd ~/Documents

1
2
3
4
5
6

/

home

aradi

Documents
1 2

3 4

56

Going one lever higher

Return to HOME directory
(equivalent to cd ~)

Usage: cd DirectoryName

● Absolute path: When relative to / (e.g. cd /home)

● Relative path: When relative to current working directory
(e.g. cd Documents)



15

Create and remove directories

● Command mkdir (make directory) creates a directory

Usage: mkdir DirectoryName

● OS does not change into the newly created directory

● Command rmdir (remove directory) removes an empty directory

Usage: rmdir DirectoryName

cd
mkdir test
cd test
cd ../
rmdir test

● Directory name can be relative or absolute
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Listing files and directories

● Command ls (list) lists the content of a directory (or specific files)

ls
Desktop Documents Downloads 
Music Pictures Public Templates 
Videos
ls Documents
ls /home
aradi

Lists current directory

Lists specific directory (relative)
No result (directory empty)

Lists specific directory (absolute)
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Command options and arguments

Unix commands accept two different kind of arguments

Optional arguments (options)

● Modify the behaviour of the command

● Always optional and can be left away, if standard behaviour is 
desired

● Start with dash (“-”) or double dash (“--”)

Positional arguments (arguments)

● Usually specify the targets of the command (typically file names)

● Are sometimes optional, but often compulsory
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Command options and arguments

ls
file1.dat  file2.dat  subdir
ls file1.dat 
file1.dat
ls -l -h
total 12K
-rw-rw-r-- 1 aradi aradi    7 Apr  2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi    6 Apr  2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4,0K Apr  2 18:11 subdir
ls -l -h file1.dat file2.dat 
-rw-rw-r-- 1 aradi aradi 7 Apr  2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr  2 18:01 file2.dat

No options, no arguments

No options, one argument

Multiple options, no arguments

Multiple options, multiple arguments

mkdir test
cd test
touch file1.dat file2.dat .hidden
mkdir subdir
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Options for ls

ls -l
total 12
-rw-rw-r-- 1 aradi aradi    7 Apr  2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi    6 Apr  2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4096 Apr  2 18:11 subdir

● -l (long listing)
Total space occupied 
by the files (in KB)

File attributes

Nr. of  inodes

User
Group

Size in bytes

Timestamp of last change

file name
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Options for ls

ls -l -h
total 12K
-rw-rw-r-- 1 aradi aradi    7 Apr  2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi    6 Apr  2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4.0K Apr  2 18:11 subdir

Total space occupied 
by the files (in KB)

File attributes

Nr. of  inodes

User
Group

Size

Timestamp of last change

file name

● -l -h (long listing, human readable): like -l, but sizes with prefixes
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Options for ls

ls -a -l
total 24
drwxrwxr-x  3 aradi aradi 4096 Apr  2 20:48 .
drwxr-xr-x 17 aradi aradi 4096 Apr  2 20:48 ..
-rw-rw-r--  1 aradi aradi    7 Apr  2 18:01 file1.dat
-rw-rw-r--  1 aradi aradi    6 Apr  2 18:01 file2.dat
-rw-rw-r--  1 aradi aradi    8 Apr  2 20:45 .hidden
drwxrwxr-x  2 aradi aradi 4096 Apr  2 18:11 subdir

● -a (all): Shows also hidden files and folders (name starts with “.”)

Current folder Parent folder Hidden file

Folder names . and .. can also be used in various commands:

ls -l ../
ls -l ../../
ls -l .

List of files in parent folder

List of files in the parent folder of the parent folder

List of files in current folder (= ls)
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Help! – man pages

● Options and arguments for a given command can be looked up in the manual

● Usage: man Command (e.g. man ls)

● Navigation on the man-page:

● Page Up / Page Down (Seite Auf / Seite Runter) – going up and down

● q – Exit the man page

● /word[ENTER] – Search forward for a given word and go to first match

● ?word[ENTER] – Seach backward for a given word and go to first match

● n – go to the next match of the last search
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File attributes

ls -l -h
total 12K
-rw-rw-r-- 1 aradi aradi    7 Apr  2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi    6 Apr  2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4.0K Apr  2 18:11 subdir

Attributes set access permissions for given entry

Shows, whether an entry is a directory

Access rights of the owner of the file

Access rights of the group members

Access rights of others (neither owner nor group member)

Permission rights:

r read

w write

x execute (if file),
change into (if directory)

Each user belongs to several groups:

id -G -n
aradi adm cdrom sudo 
dip plugdev lpadmin 
sambashare vboxsf
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Changing file attributes (chmod)

● User(s) having write access to a file can change their attributes

● Command: chmod (change file mode bits)

Usage: chmod Change FileOrDir

ls -l file1.dat 
-rw-rw-r-- 1 aradi aradi 7 Apr  2 18:01 file1.dat
chmod go-rw file1.dat 
ls -l file1.dat 
-rw------- 1 aradi aradi 7 Apr  2 18:01 file1.dat
chmod u-w file1.dat 
ls -l file1.dat 
-r-------- 1 aradi aradi 7 Apr  2 18:01 file1.dat

Who should be affected? (user, group, others)

What should be done? (+ grant, - revoke)

Which right? (read, write, execute)
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Wildcards

● Instead of file and directory names, special placeholders can be 
used to indicate files/directries matching a given pattern

Wildcard Matching pattern

* arbitrary character or characters (including nothing)

? arbitrary character (exactly one)

[0-9,a,...] one character matching any of the listed characters

or character intervals

[!0-9,a,...] one character not matching any of the listed

characters or character intervals
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Wildcards

ls
file1.dat  file3.dat  fileA.dat  fileC.dat  fileD.dat
file2.dat  file4.dat  fileB.dat  file.dat  subdir
ls file*.dat
file1.dat  file3.dat  fileA.dat  fileC.dat  fileD.dat
file2.dat  file4.dat  fileB.dat  file.dat
ls file?.dat
file1.dat  file3.dat  fileA.dat  fileC.dat
file2.dat  file4.dat  fileB.dat  fileD.dat
ls file[1-4,A].dat
file1.dat  file2.dat  file3.dat  file4.dat  fileA.dat
ls file[!1-4,A].dat
fileB.dat  fileC.dat  fileD.dat
ls *[A-C].dat
fileA.dat  fileB.dat  fileC.dat

touch file{,1,2,3,4,A,B,C,D}.dat
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Copy and move (rename) files

●  cp (copy) and mv (move) commands can be used to copy and move files

● Usage:

cp File Copy
cp Files TargetDir
mv FileOrDirectory NewName
mv FilesOrDirectories TargetDir

cp file1.dat newfile1.dat
cp file1.dat ../newfile1.dat
mkdir newdir
cp file*.dat newdir
cp -r newdir newdir2

mv file1.dat newfile1.dat
mkdir newdir3
mv fileA.dat newdir3

Make a copy

Make a copy in a different directory

Rename

Move into a different directory

Recursive copy: copy 
dir1 and all its content 
(including subdirectories)
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Delete files (rm)

●  rm (remove) command can be used to delete files

● Usage:

rm Files Removes specified files

Remove does not ask for confirmation!!!

THINK TWICE BEFORE HITTING [ENTER]!

rm -r FilesOrDirs Removes specified files and directories, including all 
subdirectories (recursive delete)

rm -i FilesOrDirs Interactive delete (asks for confirmation for every file)

rm fileC.dat
rm *.dat

rm -r newdir1
rm -r * Be very-very careful with this!!!

rm -i file2.dat
rm -r -i newdir2
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Creating archives (tar)

● Creates / Extracts an xz-compressed archive of files and directories
Usage:
tar -c -v -J -f ArchiveFile FilesDirsToArchive

compress with xzcreate

verbose write archive into file

tar -x -v -J -f ArchiveFile

extract

tar -c -v -J -f test.tar.xz test

tar -t -J -f exercise1.tar.xz

tar -x -v -J -f exercise1.tar.xz

Creates a compressed archive 
(dir1.tar.xz) of the directory dir1

Extracts the compressed 
archive (exercise1.tar.xz) in the 
current directory

Note: Archive extraction overwrites 
files without confirmation!

tar -t -J -f ArchiveFile

test (show content without extracting)

Shows archive content
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Command line navigation

● The shell remembers the command lines entered

● Within the command line and between the command line can be 
navigated with following keys (similar to Emacs key-binding)

Ctrl-A or Home Jump to the start of the line

Ctrl-E or End Jump to the end of the line

Up Go one line backwards in history

Down Go one line forwards in history

Ctrl-K Cut (kill) from position to end of line

Ctlr-Y Insert (yank) last cut

Ctrl-R Search backwords in history
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Command line completion

● When you hit the [TAB] key during entering a command/file name, 
the shell tries to extend it automatically

● The command/argument will be extended, up to the point, where  the 
extension is unique.

● If the extension is not unique, hitting [TAB] twice shows a list of 
possible extensions

ls
file1.dat  file3.dat  fileA.dat  fileC.dat  fileD.dat
file2.dat  file4.dat  fileB.dat  file.dat
rm f[TAB]
rm file[TAB][TAB]
file1.dat  file3.dat  fileA.dat  fileC.dat  fileD.dat  
file2.dat  file4.dat  fileB.dat  file.dat   
rm fileB[TAB]
rm fileB.dat
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Editing files

● Linux offers many different editors to edit files

● The most popular (classic) ones: vi and emacs

● Both are increadibly powerful, but it needs some exercising to get 
used to them (however, a must for geeks)

● Depending on the GUI, you may have additional different graphical 
editors (gedit, kate).

● Lubuntu offers a simple editor: leafpad
Usage:

leafpad FileName

leafpad file1.dat & Opens the file file1.dat

Advises the shell to execute the command in the background.

Practical when starting graphical applications from the command line, as they 
run in a separate window, and command window can then be used for entering 
further commands while they are running.
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Initialisation files

● Commands, which should be always executed whenever a command 
terminal is opened, can be written in an shell-initialisation file

● The initialisation file is automatically executed whenever a shell is 
started.

● Bash-shell has two initialisation files:

● ~/.bashrc
Executed, whenever a non-login shell is opened (e.g. opening a 
terminal in Lubuntu)

● ~/.profile
Executed, whenever a login-shell is opened (e.g. logging in via SSH)
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Setting aliases

● An alias replaces a complex shell command with a simple name

● It can also be used to apply options without specifying them each time

● Usage:

alias aliasname=”command to execute”

alias rm=”rm -i”
alias mv=”mv -i”
alias cp=”cp -i”

Invoke remove, move and copy with the 
interactive option. They will ask for confirmation 
before deleting anything.

rm file1.dat
rm: remove regular empty file 'file1.dat'? y 

● Aliases are typically added to the shell initialisation file (e.g. ~/.bashrc)

● You can still use the original command by prepending \ to it

\rm file1.dat It will not ask for confirmation, as it does 
not use the alias but the original command
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Exercise

See the course web site for the exercises!

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/download-python/
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