
1 – Unix basics

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

2

Outline

● General information

● Basic commands under Linux

3

Scientific programming

Scientific programming = Implementation of numerical algorithms in a
given programming language in order to solve scientific problems.

● Make a model

● Choose the right numerical algorithm

● Plan the program structure

● Define interfaces

● Implement the algorithms (coding)

● Test your implementation

● Document your code

● Extend, reuse your code

● Correctness

● Numerical stability

● Proper discretisation
(error estimation!)

● Flexibility

● Efficiency (speed,
memory, scaling, etc.)

Some famous numerical disasters:
http://www-users.math.umn.edu/~arnold/disasters/

http://www-users.math.umn.edu/~arnold/disasters/

4

Content of the course

● Introduction into Unix/Linux

● Basic data types, arrays

● Control structures

● Input / Output handling

● Functions, modules, packages, data hiding

● Basics of object oriented programming

● Graphical output, plotting

● Version control (git), cooperative development

● Unit testing

● Source code documentation

● Code profiling and code optimisation

● Parallel programming (eventually)

We will cover following topics:

Literature: Slides + whatever you find about Python

5

Unix in general

● Created 1969 (AT&T Bell Labs), originally written in assembler

● 1972: Rewrite from scratch in C (portability!)

● 70s, 80s: Unix gets popular in academics

● Most high performance computing (HPC) centers use Unix

● 1991: Linux Torwald starts to develop a Unix for i386-PC (Linux)

● 90s: Linux gets more and more popular on PCs.

Unix history in a nutshell

Unix has many flavours

● Linux (open source under GPL license)

● BSD (FreeBSD, NetBSD, OpenBSD, open source under BSD license)

● AIX (IBM, commercial)

● :

● Mac OS X (based on a BSD-derivative)

● Windows? (not yet, but Windows 10 has Linux subsystem)

6

Advantages of Unix (for users)

Modular

● Operating system assembled from independent parts

● Often several alternatives for the same functionality

● Unix shell: sh, ksh, csh, tcsh, bash, zsh, ...

● Graphical environment: KDE, Gnome, LXDE, etc.

Communication and network oriented

Multi-tasking and multi-user capable by design

Contains efficient tools for many different tasks

● Tools can easily be combined with each other

7

Communicating with the operating system

Graphical user interface (GUI)

● Low entry barrier

● Functionality somewhat limited (like under Windows…)

● Not always clear, what happens under the hood

Command line interface (Shell)

● Needs more knowledge (higher entry barrier)

● Very complex tasks possible

● Tasks are often easier formulated

 Typing one line instead of clicking 20 times…

➢ Closer to the operating system

● Easier to understand what is going on (esp. in case of errors)

8

Unix shell

● Received

● Interpreted

● Executed

● Confirmed (e.g. error messages)

User commands are processed by the so called Shell

Various different popular shells available:

● SH and BASH, CSH and TCSH, ZSH

● User experience slightly different

● Shell command syntax (shell programming) slightly different

● However, most commands we will use are shell-independent programs

9

Let’s start!

Open a command line window (LXTerminal)

Type the command

Prompt

(shell waits for input)

Command

(submitted with Enter)

Response / Result

Prompt

(shell waits for input)

ls

Hit Enter

10

Typical shell commands

Working with files

● Manipulating files (copy, rename, remove)

● Edit file content

● Extract information from a file

Start other programs, applications

● Editor

● Python-interpreter

● Any kind of application programs

Interact with the operating system

● Change permissions for a file

● Stop, suspend, restart running programs

11

File system

● Hierarchical: All files are part of one single tree structure

● There is one single top node (root folder): / (NOT \!)

 /
home usr media
aradi lib bin aradi
 Kingston

/media/aradi/Kingston
● Levels in the tree separated by /

● Path of a file: how can it be reached from root

● No drive letters (A:, C:, etc.)

● Mobile devices appear in special directories when inserted –
mounting a device (e.g. /media/aradi/Kingston)

● When device is removed, special directory disappears (unmounting)

12

Important directories

HOME-directory

● Every user has an own special directory

● All user created files should be stored within that directory

● Permissions for access by other users can be changed

● Often (but not necessary) the directory /home/username

Directories with executable programs

● Contain the programs which can be executed by the user

● Typically /bin, /usr/bin, /usr/local/bin, etc.

Temporary directory (/tmp)

● Running programs store temporary data here

● Usually gets cleaned up at start up

● Never store anything permanent here!

13

Current working directory

Current working directory is usually shown at the prompt

User name Host name Current working directory

The character tilde (~) is the abbreviation for the HOME-directory

~/Documents = /home/aradi/Documents

Command pwd (print working directory) shows current folder:

pwd
/home/aradi/Documents

Command

Response (full path starting from /)

14

Navigating in the directory tree

● Command cd (change directory) changes between directories

cd Documents
cd ../
cd /home
cd aradi/Documents
cd
cd ~/Documents

1
2
3
4
5
6

/

home

aradi

Documents
1 2

3 4

56

Going one lever higher

Return to HOME directory
(equivalent to cd ~)

Usage: cd DirectoryName

● Absolute path: When relative to / (e.g. cd /home)

● Relative path: When relative to current working directory
(e.g. cd Documents)

15

Create and remove directories

● Command mkdir (make directory) creates a directory

Usage: mkdir DirectoryName

● OS does not change into the newly created directory

● Command rmdir (remove directory) removes an empty directory

Usage: rmdir DirectoryName

cd
mkdir test
cd test
cd ../
rmdir test

● Directory name can be relative or absolute

16

Listing files and directories

● Command ls (list) lists the content of a directory (or specific files)

ls
Desktop Documents Downloads
Music Pictures Public Templates
Videos
ls Documents
ls /home
aradi

Lists current directory

Lists specific directory (relative)
No result (directory empty)

Lists specific directory (absolute)

17

Command options and arguments

Unix commands accept two different kind of arguments

Optional arguments (options)

● Modify the behaviour of the command

● Always optional and can be left away, if standard behaviour is
desired

● Start with dash (“-”) or double dash (“--”)

Positional arguments (arguments)

● Usually specify the targets of the command (typically file names)

● Are sometimes optional, but often compulsory

18

Command options and arguments

ls
file1.dat file2.dat subdir
ls file1.dat
file1.dat
ls -l -h
total 12K
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr 2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4,0K Apr 2 18:11 subdir
ls -l -h file1.dat file2.dat
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr 2 18:01 file2.dat

No options, no arguments

No options, one argument

Multiple options, no arguments

Multiple options, multiple arguments

mkdir test
cd test
touch file1.dat file2.dat .hidden
mkdir subdir

19

Options for ls

ls -l
total 12
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr 2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4096 Apr 2 18:11 subdir

● -l (long listing)
Total space occupied
by the files (in KB)

File attributes

Nr. of inodes

User
Group

Size in bytes

Timestamp of last change

file name

20

Options for ls

ls -l -h
total 12K
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr 2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4.0K Apr 2 18:11 subdir

Total space occupied
by the files (in KB)

File attributes

Nr. of inodes

User
Group

Size

Timestamp of last change

file name

● -l -h (long listing, human readable): like -l, but sizes with prefixes

21

Options for ls

ls -a -l
total 24
drwxrwxr-x 3 aradi aradi 4096 Apr 2 20:48 .
drwxr-xr-x 17 aradi aradi 4096 Apr 2 20:48 ..
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr 2 18:01 file2.dat
-rw-rw-r-- 1 aradi aradi 8 Apr 2 20:45 .hidden
drwxrwxr-x 2 aradi aradi 4096 Apr 2 18:11 subdir

● -a (all): Shows also hidden files and folders (name starts with “.”)

Current folder Parent folder Hidden file

Folder names . and .. can also be used in various commands:

ls -l ../
ls -l ../../
ls -l .

List of files in parent folder

List of files in the parent folder of the parent folder

List of files in current folder (= ls)

22

Help! – man pages

● Options and arguments for a given command can be looked up in the manual

● Usage: man Command (e.g. man ls)

● Navigation on the man-page:

● Page Up / Page Down (Seite Auf / Seite Runter) – going up and down

● q – Exit the man page

● /word[ENTER] – Search forward for a given word and go to first match

● ?word[ENTER] – Seach backward for a given word and go to first match

● n – go to the next match of the last search

23

File attributes

ls -l -h
total 12K
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
-rw-rw-r-- 1 aradi aradi 6 Apr 2 18:01 file2.dat
drwxrwxr-x 2 aradi aradi 4.0K Apr 2 18:11 subdir

Attributes set access permissions for given entry

Shows, whether an entry is a directory

Access rights of the owner of the file

Access rights of the group members

Access rights of others (neither owner nor group member)

Permission rights:

r read

w write

x execute (if file),
change into (if directory)

Each user belongs to several groups:

id -G -n
aradi adm cdrom sudo
dip plugdev lpadmin
sambashare vboxsf

24

Changing file attributes (chmod)

● User(s) having write access to a file can change their attributes

● Command: chmod (change file mode bits)

Usage: chmod Change FileOrDir

ls -l file1.dat
-rw-rw-r-- 1 aradi aradi 7 Apr 2 18:01 file1.dat
chmod go-rw file1.dat
ls -l file1.dat
-rw------- 1 aradi aradi 7 Apr 2 18:01 file1.dat
chmod u-w file1.dat
ls -l file1.dat
-r-------- 1 aradi aradi 7 Apr 2 18:01 file1.dat

Who should be affected? (user, group, others)

What should be done? (+ grant, - revoke)

Which right? (read, write, execute)

25

Wildcards

● Instead of file and directory names, special placeholders can be
used to indicate files/directries matching a given pattern

Wildcard Matching pattern

* arbitrary character or characters (including nothing)

? arbitrary character (exactly one)

[0-9,a,...] one character matching any of the listed characters

or character intervals

[!0-9,a,...] one character not matching any of the listed

characters or character intervals

26

Wildcards

ls
file1.dat file3.dat fileA.dat fileC.dat fileD.dat
file2.dat file4.dat fileB.dat file.dat subdir
ls file*.dat
file1.dat file3.dat fileA.dat fileC.dat fileD.dat
file2.dat file4.dat fileB.dat file.dat
ls file?.dat
file1.dat file3.dat fileA.dat fileC.dat
file2.dat file4.dat fileB.dat fileD.dat
ls file[1-4,A].dat
file1.dat file2.dat file3.dat file4.dat fileA.dat
ls file[!1-4,A].dat
fileB.dat fileC.dat fileD.dat
ls *[A-C].dat
fileA.dat fileB.dat fileC.dat

touch file{,1,2,3,4,A,B,C,D}.dat

27

Copy and move (rename) files

● cp (copy) and mv (move) commands can be used to copy and move files

● Usage:

cp File Copy
cp Files TargetDir
mv FileOrDirectory NewName
mv FilesOrDirectories TargetDir

cp file1.dat newfile1.dat
cp file1.dat ../newfile1.dat
mkdir newdir
cp file*.dat newdir
cp -r newdir newdir2

mv file1.dat newfile1.dat
mkdir newdir3
mv fileA.dat newdir3

Make a copy

Make a copy in a different directory

Rename

Move into a different directory

Recursive copy: copy
dir1 and all its content
(including subdirectories)

28

Delete files (rm)

● rm (remove) command can be used to delete files

● Usage:

rm Files Removes specified files

Remove does not ask for confirmation!!!

THINK TWICE BEFORE HITTING [ENTER]!

rm -r FilesOrDirs Removes specified files and directories, including all
subdirectories (recursive delete)

rm -i FilesOrDirs Interactive delete (asks for confirmation for every file)

rm fileC.dat
rm *.dat

rm -r newdir1
rm -r * Be very-very careful with this!!!

rm -i file2.dat
rm -r -i newdir2

29

Creating archives (tar)

● Creates / Extracts an xz-compressed archive of files and directories
Usage:
tar -c -v -J -f ArchiveFile FilesDirsToArchive

compress with xzcreate

verbose write archive into file

tar -x -v -J -f ArchiveFile

extract

tar -c -v -J -f test.tar.xz test

tar -t -J -f exercise1.tar.xz

tar -x -v -J -f exercise1.tar.xz

Creates a compressed archive
(dir1.tar.xz) of the directory dir1

Extracts the compressed
archive (exercise1.tar.xz) in the
current directory

Note: Archive extraction overwrites
files without confirmation!

tar -t -J -f ArchiveFile

test (show content without extracting)

Shows archive content

30

Command line navigation

● The shell remembers the command lines entered

● Within the command line and between the command line can be
navigated with following keys (similar to Emacs key-binding)

Ctrl-A or Home Jump to the start of the line

Ctrl-E or End Jump to the end of the line

Up Go one line backwards in history

Down Go one line forwards in history

Ctrl-K Cut (kill) from position to end of line

Ctlr-Y Insert (yank) last cut

Ctrl-R Search backwords in history

31

Command line completion

● When you hit the [TAB] key during entering a command/file name,
the shell tries to extend it automatically

● The command/argument will be extended, up to the point, where the
extension is unique.

● If the extension is not unique, hitting [TAB] twice shows a list of
possible extensions

ls
file1.dat file3.dat fileA.dat fileC.dat fileD.dat
file2.dat file4.dat fileB.dat file.dat
rm f[TAB]
rm file[TAB][TAB]
file1.dat file3.dat fileA.dat fileC.dat fileD.dat
file2.dat file4.dat fileB.dat file.dat
rm fileB[TAB]
rm fileB.dat

32

Editing files

● Linux offers many different editors to edit files

● The most popular (classic) ones: vi and emacs

● Both are increadibly powerful, but it needs some exercising to get
used to them (however, a must for geeks)

● Depending on the GUI, you may have additional different graphical
editors (gedit, kate).

● Lubuntu offers a simple editor: leafpad
Usage:

leafpad FileName

leafpad file1.dat & Opens the file file1.dat

Advises the shell to execute the command in the background.

Practical when starting graphical applications from the command line, as they
run in a separate window, and command window can then be used for entering
further commands while they are running.

33

Initialisation files

● Commands, which should be always executed whenever a command
terminal is opened, can be written in an shell-initialisation file

● The initialisation file is automatically executed whenever a shell is
started.

● Bash-shell has two initialisation files:

● ~/.bashrc
Executed, whenever a non-login shell is opened (e.g. opening a
terminal in Lubuntu)

● ~/.profile
Executed, whenever a login-shell is opened (e.g. logging in via SSH)

34

Setting aliases

● An alias replaces a complex shell command with a simple name

● It can also be used to apply options without specifying them each time

● Usage:

alias aliasname=”command to execute”

alias rm=”rm -i”
alias mv=”mv -i”
alias cp=”cp -i”

Invoke remove, move and copy with the
interactive option. They will ask for confirmation
before deleting anything.

rm file1.dat
rm: remove regular empty file 'file1.dat'? y

● Aliases are typically added to the shell initialisation file (e.g. ~/.bashrc)

● You can still use the original command by prepending \ to it

\rm file1.dat It will not ask for confirmation, as it does
not use the alias but the original command

35

Exercise

See the course web site for the exercises!

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/download-python/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

