
3 – Container data types

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

2

Outline

● Comments in source code

● Tuples, lists, dictionaries

● In-place arithmetic operators

● Some string methods

3

Comments in source code

● Comments are indicated by a non-quoted hashmark (#)

● Anything between the comment mark and the end of the line is ignored by
the interpreter

● Comments can be used to add short explanation for non-trivial /
unexpected operations so that the code logics can be followed easily

Shift index by one to ensure counting from one
ind += 1

● Comments should not be used to explain trivialities

● Your code should be clean and self documenting, and not requiring
any comments (or maximal a few ones) and still being easy to follow.

Run a loop over the range of all terms
for ii in range(nterm):
…

4

Tuples

● Contain sequences of objects of arbitrary data type

● Items within a tuple can have different data type

● Delimited by (and), elements are separated by ,

t1 = (1, 3.0, "Hello")
t1
(1, 3.0, 'Hello')

● If non-ambiguous, the delimiters can be omitted

t1 = 1, 3.0, "Hello"
t1
(1, 3.0, 'Hello')

● Empty tuple is specified with (): t0 = ()
t0
()

5

Tuples

● For tuples with one element, a comma must be appended after last
element to make it non-ambiguous:

t1bad = (1)
t1bad
1

t1good = (1,)
t1good
(1,)

● For tuples with more than one elements last comma may be added:

t1multi = (1, 2,)
t1multi
(1, 2)

6

Accessing elements of a tuple

● Tuple elements, tuple ranges can be
accessed by the [] operator

● Works exactly as for substring/character
selection in strings

t1
(1, 3.0, 'Hello')
t1[0]
1
t1[-1]
'Hello'
t1[1:3]
(3.0, 'Hello')
t1[::-1]
('Hello', 3.0, 1)

t1[0] = 24
… TypeError: …

Negative indices count
elements backwards:
-1 = last element

● Tuples are immutable, and can not be
changed once they have been created

7

Tuple operations

● Tuples can be appended with the + operator

t1 = (1, 2, 3)
t2 = (4, 5)
t3 = t1 + t2
t3
(1, 2, 3, 4, 5)

t4 = t2 * 3
t4
(4, 5, 4, 5, 4, 5)

● Number of items in a tuple can be queried by the len() function:

len(t4)
6

● Tuples can be repeated with the + operator

8

Tuple assignment

● Components of a tuple can be assigned to individual variables within an
assignment

mytuple = (1, 2)
t1, t2 = mytuple
t1
1
t2
2

Assigning entire tuple to one variable

Assigning tuple components
to individual variables

mytuple = (1, 2, 3)
t1, t2 = mytuple
ValueError: too many values to unpack (expected 2)

● The number of variables on the left hand side must be compatible with
the tuple length:

9

Lists

● Lists are very similar to tuples, but they are mutable

● Lists are delimited by [and], lists elements are separated by ,

● Element and range selection, len() function, operators + and * work
analogously to tuples

l1 = [1, 3.0, 'Hello']
l1
[1, 3.0, 'Hello']
l1[0]
1
l1[-1]
'Hello'
l1[1:3]
[3.0, 'Hello']
l1[::-1]
['Hello', 3.0, 1]

len(t1)
3
l2 = []
len(l2)
0
l3 = [1, 4,]
l4 = l1 + l3
l4
['Hello', 3.0, 1, 1, 4]
l5 = l3 * 2
l5
[1, 4, 1, 4]

10

Modifying lists

● Changing elements

l1 = [3, 2, "test", 1.5]
l1
[3, 2, 'test', 1.5]
l1[0] = 42
l1
[42, 2, 'test', 1.5]

● Changing elements

● Changing ranges

l1[0:2] = [1, -1]
l1
[1, -1, 'test', 1.5]
l1[0:4:2] = [0, 0]
l1
[0, -1, 0, 1.5]

11

Modifying lists

● If the range is continuous, it can be replaced with a list (iterable) of
arbitrary size. The size of the list will change accordingly

l1
[0, -1, 0, 1.5]
len(l1)
4

l1[0:3] = [9,]
l1
[9, 1.5]
len(l1)
2

● A given element or range can be deleted by the del statement

l2 = [1, 2, 3, 4]
del l2[0]
l2
[2, 3, 4]
del l2[0:2]
l2
[4]

l3 = [1, 2, 3, 4, 5, 6]
l3
[1, 2, 3, 4, 5, 6]
del l3[0::2]
l3
[2, 4, 6]

12

List methods

l5 = []
l5.append(1)
l5
[1]

● The extend() method can be used to extend the list by an other list (iterable)

● The append() method can be used to append one element to the list

l5.extend([4, 5, 6])
l5
[1, 2, 3, 4, 5, 6]

● Further methods for list manipulation

● insert(), index(), reverse(), …

● See Python Standard Library documentation: Sequence types

l5.append(2)
l5
[1, 2]

l5 += [4, 5, 6]
l5
[1, 2, 3, 4, 5, 6]

or

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

13

List methods

● The in operator can be used to query for the presence of an element in the
list

l5
[1, 2, 3, 4, 5, 6]
3 in l5
True
-1 in l5
False

● Lists can be sorted by the sort() method:

ll = [9, -1, 3, 8, 5]
ll.sort()
ll
[-1, 3, 5, 8, 9]

ll = [9, -1, 3, 8, 5]
ll.sort(reverse=True)
ll
[-1, 3, 5, 8, 9]

● It checks each list element individually, so
do not use it for large structures (O(N))

14

Objects and methods in a nutshell

● In Python, every type is a class, every instance (variable) an object.

● An object contains:

● Data

● Methods: Functions which use/manipulate the contained data

● Methods are called as

objectname.methodname(eventual method arguments)

ll = [1, 2]
ll.append(3)
ll
[1, 2, 3]

method (append)

method argument (new element)

Object instance (list)

15

Assignment

● An object (e.g. result of an
operation) gets a name assigned
(variable name)

● Name = Object
Name should point to Object

● Name1 = Name2
Name1 should point to the same
object to which Name2 points

● When using a variable name in an
expresssion, it will be substituted
with the object it points to.

● There are no “classic” variables
in Python, just pointers/aliases!

>>> a = 1
>>> a
1
>>> b = a
>>> b
1
>>> a = 2
>>> a
2
>>> b
1
>>> a + b
3

Name Object

a 1

a
b

1

a
b

1
2

16

Assignment of mutable types

● Analogous to immutable types

l1 = [1, 2, 3, 4]
l2 = l1
l1
[1, 2, 3, 4]
l2
[1, 2, 3, 4]

l1 = [3, 4, 5]
l1
[3, 4, 5]
l2
[1, 2, 3, 4]

Name Object

l1 [1, 2, 3, 4]

l1
l2

[1, 2, 3, 4]
[3, 4, 5]

l1 [1, 2, 3, 4]
l2

17

Assignment of mutable types

● If the content of a mutable variable is changed, the change is apparent in
all variables, which are associated with that instance

l1 = [1, 2, 3, 4]
l2 = l1
l1
[1, 2, 3, 4]
l2
[1, 2, 3, 4]

l1[2] = -1
l1
[1, 2, -1, 4]
l2
[1, 2, -1, 4]

Name Object

l1 [1, 2, 3, 4]
l2

l1 [1, 2, -1, 4]

l2

● Efficient, no copy is made

● Watch out for unwanted side effects with mutable types

18

Assignment of mutable types

● If a copy is needed, it must be explicetly created

● Try to avoid making copies, unless really necessary

l1 = [1, 2, 3, 4]
l2 = list(l1)
l1
[1, 2, 3, 4]
l2
[1, 2, 3, 4]

l1[2] = -1
l1
[1, 2, -1, 4]
l2
[1, 2, 3, 4]

Name Object

l1 [1, 2, 3, 4]
[1, 2, 3, 4]l2

l1 [1, 2, -1, 4]
[1, 2, 3, 4]l2

19

Assignment of mutable types

l1 = [1, 2, 3, 4]
l2 = [-1, -2, -3, -4]
l3 = [l1, l2]
l4 = list(l3)
l3
[[1, 2, 3, 4], [-1, -2, -3, -4]]
l4
[[1, 2, 3, 4], [-1, -2, -3, -4]]

l3[0][0] = 9
l3
[[9, 2, 3, 4], [-1, -2, -3, -4]]
l4
[[9, 2, 3, 4], [-1, -2, -3, -4]]
l1
[9, 2, 3, 4]

● If you copy a nested mutable object, only top layer is copied (shallow copy)

l1 [1, 2, 3, 4]
[-1, -2, -3, -4]l2

l3 [l1, l2]
[l1, l2]l4

l1 [9, 2, 3, 4]
[-1, -2, -3, -4]l2

l3 [l1, l2]
[l1, l2]l4

● Function deepcopy() in
module copy can be used,
if true nested copy is
needed

20

Tuple/List operations

● The + operator creates a new list by concatenation:

l1 = [1, 2, 3]
l2 = [4, 5, 6]
l1 + l2
[1, 2, 3, 4, 5, 6]

● The * operator creates a new list by repetition

l1 = [1, 2, 3]
l1 * 2
[1, 2, 3, 1, 2, 3]

21

In-place operations

● In-place operations store the result of an arithmetic operation in the first
operand:

aa = aa + bb
aa = aa - bb
aa = aa * bb
aa = aa / bb
aa = aa // bb

aa += bb
aa -= bb
aa *= bb
aa /= bb
aa //= bb

equiv.

● For mutable objects it can help to avoid creating unnecessary copies

long = [1, 2, …]
short = [-1, -2]

long = long + short

long += short

long.extend(short)

Creates a temporary copy of long,
extends it with short and replaces long
with the result

Makes an in-place addition (usually without
temporary copy)

Extends list directly without temporary copy

22

Dictionaries

● Store items of arbitrary type

● Items identified by their unique key, not by their position

● Key must be of immutable data type

● Dictionary is delimited by { and }

d1 = {"test1": 1, "test2": "Hello", 12: [1, 2]}
d1
{'test1': 1, 12: [1, 2], 'test2': 'Hello'}

key value key value key value

● Elements can be accessed as in lists, but by using their key

d1["test1"]
1
d1[12]
[1, 2]

23

Dictionaries

● Dictionaries are mutable

● If a key is used, which is already present, the item is overwritten

d1["test1"] = 3+4j
d1
{'test1': (3+4j), 12: [1, 2], 'test2': 'Hello'}

● If a key is used, which is not present yet, a new item is created

d1[(-1,)] = 12
d1
{'test1': (3+4j), 12: [1, 2], 'test2': 'Hello',
(-1,): 12}

del d1["test2"]
d1
{'test1': (3+4j), 12: [1, 2], (-1,): 12}

● Elements can be deleted by the del statement

24

Dictionaries

● Empty dictionary can be created by {}

d0 = {}
len(d0)
0

d0 = {}
d0
{}

len(d0)
0

● Number of key/value pairs can be queried by the len() function

25

Dictionaries

● The get() method can be used to obtain an item or a default value if the
key is not found

default = -1
key = "missing"
value = d0.get(key, default)

● Trying to access a non-existing key leads to an error

d0["missing"]
… KeyError: 'missing

● The in operator can be used to check the presence of a key

'test1' in d1
True
"missing" in d1
False

if key in d0:
 value = d0[key]
else:
 value = default

26

Sets

● Sets contain only keys (like dictionaries), but no values

● Every key (element) is unique and occurs only once

s1 = {"test", 12, -3.6, (1,2)}
s1
{(1, 2), 12, -3.6, 'test'}

● Elements can be added by the add() method

s1.add(True)
s1
{(1, 2), True, 12, -3.6, 'test'}

● Adding an already existing element to the set leaves it unchanged:

s1.add("test")
s1
{(1, 2), True, 12, -3.6, 'test'}

27

Set

● Elements can removed by the remove() method

s1.remove(-3.6)
s1
{(1, 2), True, 12, 'test'}

● The in operator can be used to check the presence of an element

s1
{(1, 2), True, 12, 'test'}
12 in s1
True
13 in s1
False

28

Lists, sets, dictionaries – summary

Lists

● Ordered, elements are identified by their unique position (index)

● Fast O(1) access, if index of the element is known

● Slow O(N) access, if index is not known (e.g. looking for an element with
given value)

Dictionary

● Unordered, elements identified by their unique key

● Fast O(1) access, if key of an element is known

● Slow O(N) access, if key is not known (e.g. looking for an element with
given value)

Sets

● Unordered, elements are unique

● Fast O(1) access for checking element presence

29

Containers as iterators

● All containers can be used as iterators (e.g. in for-loops)

● Lists and tuples return their elements ordered by their index (position)

ll = [1, "test", 12.6, -1+3j]
for item in ll:
 print("Next item: ", item)

Next item: 1
Next item: test
Next item: 12.6
Next item: (-1+3j)

● Sets return their element one by one, but the order is undetermined:

s1 = {True, 12, 'test', (1, 2)}
for item in s1:
 print('Item:', item)

Item: (1, 2)
Item: True
Item: 12
Item: test

30

Containers as iterators

dd = {12: [1, 2], 'test1': 3.2, (-1,): True}
for key in dd:
 print("key: {}".format(key))

key: 12
key: (-1,)
key: test1

● Dictionaries return their keys one by one, but the order is undetermined:

for val in dd.values():
 print("value: {}".format(val))

● An iterator over dictionary values can be obtained by the values() method

value: [1, 2]
value: True
value: 3.2

● An iterator over key, value tuples can be obtained by the items() method:

for key, val in dd.items():
 print("{}: {}".format(key, val))

12: [1, 2]
(-1,): True
test1: 3.2

31

Enumerate

ll = [1, 'test', 12.6, (-1+3j)]
for ind, item in enumerate(ll):
 print("Item {:d}: {}".format(ind, item))

● If within an iteration you need both, the iterator value and the current
iteration number, you can use the enumerate() iterator

● enumerate() returns a new iterator over tuples containing the current
iteration number and the value from the passed iterator

Item 0: 1
Item 1: test
Item 2: 12.6
Item 3: (-1+3j)

for ind in range(len(ll)):
 print("Item {:d}: {}".format(ind, ll[ind]))

equivalent

32

Initializing containers with iterators

● Most containers can be created from arbitary iterators

● The container will be filled up with the elements of the iterators as if they
had been added one by one

list('test')
['t', 'e', 's', 't']

set('test')
{'e', 's', 't'}

set([1, 2, 4, 2, 1])
{1, 2, 4}

dict([('a', 1), (3.2, 'hello')])
{3.2: 'hello', 'a': 1}

Every string can be used as an
iterator over the charaters in it

If the container does not
support multiple entries, they
will become unique

Dictionary needs an iterator
over (key, value) tuples

33

Comprehensions

● A comprehension can be used to create containers with a (slightly)
modified or filtered content of an iterator

words = ["Wort", "Word", "WORT", "word"]
loweredwords = [word.lower() for word in words]
loweredwords
['wort', 'word', 'wort', 'word']

nums = [1, 3, 2, 9, 8, 3]
oddsquares = [num**2 for num in nums if num % 2]
oddsquares
[1, 9, 81, 9]

List comprehension

[expr for itervar in iterator if condition]

filtering is optional

Converts every character
in a string to lowercase

34

Comprehensions

Set comprehension

{expr for itervar in iterator if condition}

filtering is optional

nums = [1, 3, 2, 9, 8, 3]
oddsquares = {num**2 for num in nums if num % 2}
oddsquares
{1, 9, 81}

oddsquares = {num: num**2 for num in nums if num % 2}
oddsquares
{1: 1, 3: 9, 9: 81}

Dictionary comprehension

{keyexpr: valuexpr for itervar in iterator if condition}

filtering is optional

35

Comparison

● Equality of containers can be checked with == and != operators

● Two containers are equal, if all elements and their keys/indices are equal

{'key1': 1, 'key2': 2} == {'key2': 2, 'key1': 1}
{'key1': 9, 'key2': 2} == {'key2': 2, 'key1': 1}

True
False

● Ordered (sequence) types can also be compared by >, >=, <, <=

● The comparison is done component-wise

● The first non-matching component determines the relation

(1, 2, 3) > (1, 2, 4)
(9, "ahoi") > (6, "hello")

False
True

ll = [(9, "ahoi"), (6, "hello")]
ll.sort()
ll
[(6, 'hello'), (9, 'ahoi')]

● The same ordering rules are applied in internal routines, like sorting:

36

Some string methods

"a,b,c,d".split(",")
['a', 'b', 'c', 'd']

"One short line.\nOne more.".split()
['One', 'short', 'line.', 'One', 'more.']

split(separator)
● Splits a string into pieces using a given delimiter

● If no delimiter is specified, the string is split by any whitespace
characters (space, tab, newline)

split(separator)

join(iterator)

● Joins the elements of the iterator into a string using the string as delimiter

● All elements returned by the iterator must be strings

", ".join(["word1", "word2", "word3"])
'word1, word2, word3'

37

Some string methods

"Word".lower()
'word'
"Word".upper()
'WORD'

● Converts all characters in a string to lower/upper case

lower(), upper()

" word ".lstrip()
'word '
" word ".rstrip()
' word'
" word ".strip()
'word'

● Removes whitespace characters from left, right and both sides of a string

lstrip(), rstrip(), strip()

See Python Standard Library docs: String methods

https://docs.python.org/3/library/stdtypes.html#string-methods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

