
5 – File I/O, Plotting with Matplotlib

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

2

Installing some SciPy stack components

We will need several Scipy components for the exercises:

sudo apt-get install python3-scipy python3-matplotlib

Alternatively, in the Conda installer use:

conda install scipy matplotlib

3

File I/O workflow

● Open file

● Do read/write operations

● Close file

fp = open("test.txt", "r")
txt = fp.read()
fp.close()

with open("test.txt", "r") as fp:
 txt = fp.read()
print("The file has been already closed")

● The closing of a file is optional (although recommended)

● Using context manager blocks (with … as …) closing the file can be
automatic

● File would be closed as soon as the block is left

4

Opening a file

● A file is opened by the open() function

open(filename, mode)

● It returns a file handler which can be used to manipulate the file content

● The file handler is valid until the file is closed with the close() statement

● Mode flag determines what can be done with the file and how the file
content is handled (as text or binary data)

"r" Open for reading (default)

"w" Open for writing (truncating content if already present)

"a" Open for writing (appending to existing content)

"b" Binary mode

"t" Text mode (default)

"+" Open file for updating (reading and writing)

5

Reading from text file

● Iterating over file handler
returns the lines in the file as
strings (including the newline
character a the line ends):

for line in fp:
 print(line)

● The readlines() method returns a
list of the lines in the file:

lines = fp.readlines()
print(lines)

● The read() method returns the
entire file content as one string:

txt = fp.read()
print(txt)

● The readline() method returns the
next line in the file (and empty
string if all lines had been read):

line = fp.readline()
while line:
 print(line)
 line = fp.readline()

fp = open("test.txt", "r")

6

Writing to text file

● The write() method writes
a given string into a file

fp = open("test.txt", "w")

fp.write("Line 1\n")

lines = ["Line1\n", "Line2\n"]
fp.writelines(lines)

lines = ["Line1\n", "Line2\n"]
for line in lines:
 fp.write(line)

lines = ["Line1", "Line2"]
fp.write("\n".join(lines))

● The writelines() method
writes a list of strings into a
file

equiv.

equiv.

7

Reading / writing numerical data

● Numpy/Scipy have special routines to read/write data arrays in text
form (and also in other formats)

numpy.loadtxt() Reads data from a file into an array

numpy.savetxt() Writes array data into a file

data = np.loadtxt("test.dat")
data

array([[1., 2.],
 [3., 4.]])

Some comment
1 2
3 4

test.dat:

data2 = np.array([1, 2, 3])
np.savetxt("test2.dat", data2)

1.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00

test2.dat:

8

Path manipulation

os.path module

● Module with very helpful functions for file name and path manipulations

● os.path.join(): Joining path names:

import os.path

directory = "schroedinger/harmonic"
fname = "energies.dat"
fname_full = os.path.join(directory, fname)
fname_full
'schroedinger/harmonic/energies.dat'

9

Plotting data with matplotlib

● Fully object oriented interface

● Matlab-like simplified interface (pyplot)

Matplotlib interfaces

● Embedding plots into the IPython/Jupyter notebook

%matplotlib inline

Matplotlib render engines

● Showing plots in separate windows (when using from script or from
IPython-console

● Creating graphical files (pdf, jpg, etc.)

10

Self-containing plotting example

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

xx = np.linspace(0.0, 4.0 * np.pi, 200, endpoint=True)

y1 = np.cos(xx)
y2 = np.sin(xx)

plt.plot(xx, y1, color='red', linewidth=1.0,
 linestyle="--", label='cos(x)')
plt.plot(xx, y2, color='blue', linewidth=1.0,
 linestyle="-", label='sin(x)')

plt.legend()

plt.show()

11

Self-containing plotting example

12

Plotting with pyplot

%matplotlib inline

Embed figures into Jupyter-notebook
(Leave this out if you do not work in a Jupyter notebook)

import numpy as np
import matplotlib.pyplot as plt

Use simplified (pyplot) interface

xx = np.linspace(0.0, 4.0 * np.pi, 200, endpoint=True)

Generate x-coordinates of the points to plot

200 points evenly distributed in the interval [0.0 to 4 * pi],

Including the upper bound

13

Plotting with pyplot

y1 = np.cos(xx)
y2 = np.sin(xx)

Generate the y-coordinates of the points to plot (two curves)

plt.plot(xx, y1, color='red', linewidth=1.0,
 linestyle="--", label='cos(x)')
plt.plot(xx, y2, color='blue', linewidth=1.0,
 linestyle="-", label='sin(x)')

Plot the points xx, y1 and xx, y2 (and connect them)

Set line color to red/blue

Set line width to 1.0 pixel

Set line style to dashed/solid

Set curve label to cos(x) / sin(x)

14

Plotting with pyplot

plt.legend()

Plot legend box

plt.show()

Render figure on screen

plt.savefig('curves.pdf', format='pdf')

Render figure into file

Alternative rendering into file:

15

Axis object

Axis objects enables access to several fine-tuning settings

ax = plt.gca()
ax.xaxis.set_ticks_position('top')
ax.yaxis.set_ticks_position('right')
ax.spines['top'].set_position(('data', 0))
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none)

Get current axis

16

Subplots

plt.subplot(2, 1, 1)
plt.plot(xx, y1, color='red', linewidth=1.0,
 linestyle="--", label='cos(x)')
plt.legend(loc='upper right')

plt.subplot(2, 1, 2)
plt.plot(xx, y2, color='blue', linewidth=1.0,
 linestyle="-", label='sin(x)')
plt.legend(loc='upper right')
plt.show()

Plotting of multiple plots on a grid within one figure:

plt.subplot(nrow, ncol, iplot)

nrow Number of grid rows

ncol Number of grid columns

iplot Current plot nr. (left to right, top to bottom)

17

Rendering TeX within plots

Matplotlib can render TeX sequences within the plots

plt.xticks(
 [0.0, np.pi / 2, np.pi,
 3 * np.pi / 2],
 [r'0.0',
 r'$\frac{\pi}{2}$',
 r'π',
 r'$\frac{3\pi}{2}$'],
 fontsize=16)

● TeX-sequences should be delimited by $

● It is advisable to put TeX-sequences into raw-strings (r’something’)

● In raw-strings, backslashes are interpreted literally and not as special
Python commands (e.g. \n as “\” “n” and not as newline)

● Useful when passing backslash commands to various enginens (TeX-
sequences in Matplotlib, regular expressions, ...)

18

Further useful Matplotlib functions

plt.xlim(), plt.ylim() Setting/Querying x/y limits

plt.xticks(), plt.yticks() Setting customized ticks (and tick labels)

plt.annotate() Write text into the plot

plt.plot() Curve plot

plt.scatter() Scatter plot

plt.bar() Bar plot

plt.contour() Contour plot

plt.imshow() Bitmap image

plt.pie() Pie charts

plt.quiver() Quiver plots

:

See for example Matplotlib: plotting in Scipy-lectures

https://scipy-lectures.org/intro/matplotlib/index.html
https://scipy-lectures.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

