
6 – Git & Modularization

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

2

Prerequisites

Additional programs needed:

● Spyder3, Pylint3

● Git, QGit

● KDiff3 (non-KDE (qt-only) version)

sudo apt install spyder3 git qgit kdiff3-qt

Recommendation:

● Set up your default editor (leafpad) to use monospaced fonts

featherpad

3

Programming project (for lectures)

linsolver

● Program package for solving linear system of equation

● It should offer Gaussian-elimination and LU-decomposition methods

● It should read data either from file or from console and write results to
file or to the console

● It should have an automatic test framework for unit tests

● It should be well documented and cleanly written.

Note: This project serves didactical purposes only, the optimized routines
of SciPy should be usually used to solve a linear system of equations.

4

Spyder3 editor

spyder3 &

Editor

Help / Variable explorer

Python / IPython console

Project
explorer

Go through the tutorial: Help / Spyder tutorial

● Enables easy development of large scientific Python projects

Start application in background and
return command prompt immediately

5

Create a new project

mkdir ~/projects Directory for all Python-projects

● Create a directory for all your projects (optional)

● Create the Python project linsolver with Spyder
(select ~/projects/linsolver as target directory):

6

Add files to the project

● Add the new files solvers.py and test_solvers.py to your project

● Download and copy & paste the following content to your files:

● solvers.py

● test_solvers.py

● Make sure you save both files (Ctrl-S)

https://www.bccms.uni-bremen.de/fileadmin/BCCMS/personen/aradi/sciprog/python/solvers.py
https://www.bccms.uni-bremen.de/fileadmin/BCCMS/personen/aradi/sciprog/python/test_solvers.py

7

Python module

"""Routines for solving a linear system of equations."""
import numpy as np

def gauss_eliminate(aa, bb):
 """...
 """
 print("Linsolve: received aa:", aa)
 print("Linsolve: received bb:", bb)
 xx = np.zeros((len(bb),), dtype=float)
 return xx

● File containing routines, constants etc. which can be used by other
Python scripts.

● Modules enable logical structuring and reusability

solvers.py

Doc-string documenting the moduleFunction within a module

8

Using a module

● Modules can be imported by the import command

import solvers

● The module content can be accessed by the dot-notation

xx_gauss = solvers.gauss_eliminate(aa, bb)

● At import Python looks up following places:

● Local directory

● Directories contained in the PYTHONPATH environment variable

● Package directories of the Python distribution

● The PYTHONPATH environment variable can be set for the current
BASH shell (or .bashrc if it should be always set):

export PYTHONPATH=/home/.../some_directory

9

Python executables

● When a python script is run all Python commands in it are executed

● In order to make all such Python scripts importable, the commands to be
executed should be placed into a function (usually called main())

● Pythons internal __name__ variable can be used to check, whether the
script is executed as standalone script (otherwise imported as module)

def main():
 """Main script functionality."""
 :

if __name__ == '__main__':
 main()

test_solvers.py

10

Execute a python script

● A Python script can be executed from the current shell by starting the
Python-interpreter and passing the script as first argument:

python3 test_solvers.py

● If the first line of a script contains a special comment starting with #!, the
shell automatically calls the specified interpreter and passes the script
content to the interpreter when the script is executed directly.

● The executable attribute has be set in order to execute the script directly

#!/usr/bin/env python3
:

#!/usr/bin/python3
:

chmod +x ./test_solvers.py
./test_solvers.py

or

test_solvers.py test_solvers.py

11

Execute a Python script within Spyder3

● Spyder3 can execute any Python script of the project

● The script can be either run in a separetate Python process or in the
IPython console

● Execute the test_solvers.py file in the IPython console (press F5 when
the test_solvers.py is the active file in the editor)

● Congratulation! You successfully started your first Python project!

● Before you start to develop it, it should be set under version control...

12

Typical scenario with version control

Scenario
● New project is started

● Program tested, everything works OK

● New functionality is added

● Suddenly, something does not work as supposed, although it was
working before (note: testing framework apparently not satisfactory)

Solution work-flow with version control

● Go back in history to the last revision (evtl. by bisection), until a
correctly working version is found

● Inspect the changes introduced in the snapshot (commit) and find out
the reason for the failure

● Fix the bug in the most recent program version

13

Version control

● Document development history (store snapshots of the project)

● Help coordinating multiple developers working on the same project

● Help coordinating development of multiple versions of a project

● Central server stores history database (repository)

● Developer must have connection to the server for most version control
operations (especially for commits, checkouts or browsing history).

Main tasks of a version control system

Centralized version control system (CVS, Subversion, …)

● Every developer has a local copy of the full development history

● Most version control operations do not require network connection
(except synchronization between developers)

Distributed version control system (Git, Mercurial, Bazaar, …)

14

Introduce yourself to git

● Enter your name and email address (needed for the logs)

git config --global user.name "Bálint Aradi"
git config --global user.email "aradi@uni-bremen.de"

Command Sub-command Option

● Specify standard tools to be used

git config --global core.editor featherpad
git config --global diff.tool kdiff3
git config --global merge.tool kdiff3

● Option --global stores options globally (for each git project), otherwise
they are only valid for the current project

● Global options are stored in the ~/.gitconfig file

● Current options (global and project specific) can be listed with --list

git config --list

15

Create a repository

● Initialize a repository in the project directory

cd ~/projects/linsolver
git init
Initialized empty Git repository in
/home/aradi/projects/linsolver/.git/

Creates an empty
revision database in
~/projects/linsolver

● Files within the project directory can be placed under version control

● Files within the .git directory should not be change manually

● When copying project directory recursively (including the .git subdirectory)
the entire revision history is copied

16

Add files to the version control

git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be
committed)

 .spyproject
 __pycache__/
 solvers.py
 test_solvers.py

nothing added to commit but untracked files present
(use "git add" to track)

17

Staged files

● When issuing git add, corresponding files (changes) are staged

● Staged files (changes) are written to the database at next commit

git add solvers.py test_solvers.py
git status
On branch master

Initial commit

Changes to be committed:

new file: solvers.py
new file: test_solvers.py

18

Ignoring non-version controlled files

● Files not supposed to be version controlled can be listed in
the .gitignore file in the project directory

featherpad .gitignore
git add .gitignore
git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

new file: .gitignore
new file: solvers.py
new file: test_solvers.py

.spyproject
__pycache__

Save (Ctrl-S)
and exit
featherpad
(Ctrl-Q)

● The .gitignore file should be also placed under version control

19

Commit project status

git commit
[master (root-commit) 04d3866] Add first stub files
 3 files changed, 39 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 solvers.py
 create mode 100644 test_solvers.py

git status
On branch master
nothing to commit, working directory clean

Opens editor
(featherpad)

Write log message
(“Add first stub files”),
save and exit
featherpad

● When a commit is made, the staged changes are written into the database

20

Checking project history

● Show project history:

git log
04d386638495386aa29ee99e4928aad2e7731f39
Author: Bálint Aradi <aradi@uni-bremen.de>
Date: Fri May 18 21:17:48 2018 +0200

 Add first stub files

● Individual commits are identified by hash checksums

● Checksums can be shortened as long as they are unambiguous

● --oneline option gives a short summary of the log messages (and shows
also shortened checksums)
git log --oneline
04d3866 Add first stub files

21

Checking project history

commit 2a3186299e14575a40b870cc3f8eb21c1e886809
Author: Bálint Aradi <aradi@uni-bremen.de>
Date: Fri May 18 21:37:48 2018 +0200

 Add readme file

commit 04d386638495386aa29ee99e4928aad2e7731f39
Author: Bálint Aradi <aradi@uni-bremen.de>
Date: Fri May 18 21:17:48 2018 +0200

 Add first stub files

● Revision history and log messages are shown in reverse time order

● If history is longer than a page,
it is shown page-wise via the
default pager (e.g. less)

Navigation: [space] Page down
 b Page up
 q Quit pager

22

Git-workflow

● Set up git global for your Unix account

git config --global ...

● Set up the repository for your project

git init

● Edit files in your project

● Stage files / changes

git add ...

● Commit staged changes into repository

git commit ...

Working directory

Stage

Repository

git add

git commit

● It is possible to stage all changes in all files which are already under
version control: git add -u

23

Some git notes

● Changes should be commited, if implementation of a feature is finished

● Development history should be easy to follow based on the log messages

● Changes within a commit should be small enough so that a developer can
easily follow and understand them.

● Log messages should contain a short sentence (max. 50-60 chars),
optionally followed by an empty line and a more detailed description.
(See for example: How to Write a Git Commit Message)

Implement LU-decomposition with back substitution

LU-decomposition is implemented without permutation.
Check for linear dependency is not implemented yet.

● Short (one-liner) log messages can be passed on the command line

git commit -m "Add first stub files"

https://chris.beams.io/posts/git-commit/

24

Rename files

● Rename a file under version control:

git mv README README.txt
git status
On branch master
Changes to be committed:
#
(use "git reset HEAD <file>..." to unstage)
#
#
renamed:
README -> README.txt
git commit -m "Rename readme file"

● Corresponding file in working directory will be renamed immediately

● The name change must be committed like any other change

25

Delete files

● Delete (remove) a file under version control

git rm unnecessary_file
git status
On branch master
Changes to be committed:
#
(use "git reset HEAD <file>..." to unstage)
#
#
deleted: unnecesary_file
git commit -m "Delete unnecessary file"

● Corresponding file in the working directory will be deleted immediately

● The removal must be committed like any other change

● The file will be not present in future revisions, but stays part of the
previous commits.

26

Investigating changes

● Changes between working copy and last checked in / staged version

git diff README.txt
diff --git a/README.txt b/README.txt
index 8eab0a7..770eee5 100644
--- a/README.txt
+++ b/README.txt
@@ -1,5 +1,5 @@
-**********
-Linsolvers
-**********
+*********
+Linsolver
+*********

Lines removed

Lines added

● If no file name is specified, all changes in all files are shown

git diff

27

Investigating changes

● Changes between two committed revisions can be queried by specifying
the revision hashes

git diff 04d386 2a3186 -- README.txt
diff --git a/README.txt b/README.txt
new file mode 100644
index 0000000..8eab0a7
--- /dev/null
+++ b/README.rst
@@ -0,0 +1,5 @@
+**********
+Linsolvers
+**********
+
+Linsolver is a package for solving linear systems of
equations.

Optional, if missing all changes shown

28

Investigating changes via external tools

git difftool

Viewing (1/1): 'README.rst'
Launch 'kdiff3' [Y/n]?

● The difftool sub-command calls the default diff-viewer to visualize changes

29

Discard changes in working copy

git status
On branch master
Changes not staged for commit:
 (use "git checkout -- <file>..." to discard
changes in working directory)

modified: README.txt

no changes added to commit (use "git add" and/or
"git commit -a")

git checkout -- README.txt

git status
On branch master
nothing to commit, working tree clean

● Set working directory back to last committed / staged version:

Note: overwrites working
copy immediately!

30

Unstage files

git status
On branch master
Changes to be committed:

modified: README.txt

git reset HEAD README.txt
Unstaged changes after reset:
M README.txt

git status
On branch master
Changes not staged for commit:

modified: README.txt

● Staged files can be
unstaged, if they should
not be part of the next
commit

● Corresponding file in the
work directory is not
changed by the opertation

31

Check out an earlier version

git checkout 2a31862
M README.rst
Note: checking out '2a31862'.

You are in 'detached HEAD' state...

HEAD is now at 2a31862 Add readme file

git status
HEAD detached at 2a31862

● Previous commits can be checked out by specifying their hash value

● You have to change back to the current version (or to create a branch) to
commit any changes

git checkout master
Switched to branch 'master'

32

Git aliases

● Aliases help to abbreviate often used git commands and options

git config --global alias.ci commit
git config --global alias.co checkout
git config --global alias.st status
git config --global alias.gdiff difftool
git config --global alias.slog "log
--pretty=format:\"%h | %ad | %s%d\"
--graph --date=short --all"

● If an alias is used, the corresponding command / options will be substituted

git ci -m "Add quick changes"
git co 2a31862
git st
git gdiff README.rst
git slog

Please create
these aliases
for your
account, since
the following
examples will
make use of
them!

33

Tagging versions

● Commits with special importance (e.g. release) can be tagged

● Annotated tags are commited with a log-message

● By default the last checked in commit is tagged

git slog
* 2a31862 | 2018-05-18 | Add readme file (HEAD -> master)
* 04d3866 | 2018-05-18 | Add first stub files

git tag -a 0.1

git slog
* 2a31862 | 2018-05-18 | Add readme file (HEAD -> master,
tag: 0.1)
* 04d3866 | 2018-05-18 | Add first stub files

● Tag names can be used instead of
revision hashes in git commands

git diff 04d3866 0.1

34

Git help

● Git can display help for every subcommand:

git help commit Displays help for subcommand commit

● Several graphical git-clients exist to visualize development history:

gitk

35

Clone a repository

● Existing repositories (e.g. published on hosting sites) can be cloned

● Local clone will contain full revision history and annotated tags

git clone
http://www.bccms.uni-bremen.de/fileadmin/BCCMS/CMS/
people/aradi/sciprog/python/linsolver.git
Cloning into 'linsolver'...

● You can work (change, commit to, etc.) with the cloned repository as
with any other locally created one

36

Some further git-notes

● Read the manual for detailed git options

● You should commit after each non-trivial change of the project.
Rule of thumb: It should be easy for other developers to follow and
understand the changes of a commit.

● One commit should always contains logically related changes.

● Version history is stored in the .git sub-directory. If it is copied with the
project, the version history is copied as well.

● Git commands must be executed in the project directory or in a
subdirectory of it.

● If no files are specified, git commands have the entire project (the files
which are already under version control) as target

● Revision hashes are global: They represent the status of all files in the
project to a given time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

