
7 – Testing & Code Analysis

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

2

Installing necessary components

We will need additional programs:

● Pytest

● Pylint3

● Pyflakes3

● Pytest coverage plugin

sudo apt install python3-pytest pylint3 pyflakes3
python3-pytest-cov python3-spyder-unittest

Conda:

mamba install pytest pytest-cov coverage pylint pyflakes

3

Outline

● Program testing (unit tests)

● Testing coverage

● Code quality analysis

Program testing

5

Program testing

Write program

Check correctness
for selected cases

Extend/Refactor program

Check correctness
of new functionality
for selected cases

Are old features
still functional?!

Write program

Check functionality

Distribute program

Do features in a
different environment
work as expected?!

6

Program testing

Effort needed to carry out tests must be as low as possible

● It should be possible to run all (or seleted tests) with one command

● Tests should be reasonably fast

● Correctness of the results should be checked automatically

● Package functionality/integrity must be tested after each (relevant) change

● Package functionality/integrity must be tested whenever it is used in a
different environment

When to test?

How to test?

Automated testing (with test protocol)
is an essential part of the development

7

Testing during development

Unit tests – white box testing

● Each program unit (e.g. function) is tested independently

● Check whether for given input the right output is returned

Regression tests – black box testing

● Testing the package functionality as whole

● Tesintg whether for given input (e.g. user supplied data) expected
output is generated

● Often includes stress-tests or scaling tests

Test driven development (e.g. agile programming)

● First write the tests for a given functionality, then imlement the
functionality

● If a bug is found, add it as test first (improve coverage) and then fix it so
that it passes the test

8

Automatic testing frameworks

Unittest package in Python (a.k.a. unittest2)

● Comes as package with the standard Python 3 distribution (out of the box)

● Powerful with a lot of features

● Needs object-oriented approach to define tests

Pytest package

● Third party package (extra dependency, although quite standard)

● Extremly powerful and versatile, actively developed with large community

● Works both, with procedure and object oriented approach

● Simple tests can be set up with a few lines of code

Nose / Nose 2 package

● Third party package (extra dependency)

● In many respects similar to Pytest

● Small community, future development rather unsure

[Pytest documentation]

[Unittest documentation]

[Nose 2 project site]

https://docs.pytest.org/en/latest/contents.html
https://docs.python.org/3/library/unittest.html
https://github.com/nose-devs/nose2

9

Writing simple tests in Pytest

1. Write functions for testing given procedures / functionality

2. Function should indicate test result (success / failure) using assert

import mymath

def test_factorial_small():
 "Test the factorial function for a small number"
 result = mymath.factorial(5)
 assert result == 120

def test_factorial_zero():
 "Test whether the factorial of zero is correct"
 result = mymath.factorial(0)
 assert result == 1

Assume we have defined
a factorial() function in the
mymath module

The name of the test functions
must start with “test”

assert: If expression evaluates to false, code
execution is stopped (an exception is raised to
signalize failure) otherwise execution is continued

10

Running tests from the shell

● Go to the directory with the file containing the tests

● Start Python and import the pytest module

python3 -m pytest

python3 -m pytest
============================= test session starts ...
test_mymath.py ...

=========================== 3 passed in 0.13 seconds ...

● It will scan all Python source files in the given directory for test functions
and execute all tests found (all functions with names prefixed by “test”)

● When pytest is imported in an executed script, it will automatically start
test-discovery

11

Running tests from Spyder

● Use the unittest extension of Spyder to run the unit tests:

12

Parametrized tests

● When same test should be run several times with different input data

● pytest.mark.parametrize decorator executes test function for various tests
by running over a list of parameters and passing one parameter at a time to
the test function

import pytest
import mymath

factorials = [(0, 1), (1, 1), (2, 2), (3, 6), (4, 24),
 (8, 40320)]

@pytest.mark.parametrize("factorial", factorials)
def test_factorials(factorial):
 "Tests explicit factorial results"
 fact, result = factorial
 assert mymath.factorial(fact) == result

Decorator (note “@”!) must be placed
immediately before the function definition

Variable containing the
actual parameter value

Parameter list

13

Parametrized tests

import pytest
import solvers
TESTNAMES = ['simple', 'needs_pivot']

@pytest.mark.parametrize("testname", TESTNAMES)
def test_successful_elimination(testname):
 "Tests successful elimination."
 aa, bb = get_test_input(testname)
 xx_expected = get_test_output(testname)
 xx_gauss = solvers.gaussian_eliminate(aa, bb)
 assert np.all(np.abs(xx_gauss - xx_expected) < 1e-10)

Decorator must be placed
immediately before
function definition

Example
● Prepare input and expected result (e.g. loading from disc)

● Calculate result using prepared input

● Compare result with prepapred result

14

Test fixture

● When multiple tests need the same initialization

● @pytest.fixture decorator defines an initialization function

● Return value of fixture function is passed to tests with appropriate argument

● Fixture function is called for each test separately

import numpy.random as random
import pytest
import mymath

@pytest.fixture
def smallrandint():
 rand = random.random()
 # Transforming integer into range [1, 10]
 randint = int(10 * rand) + 1
 return randint

Fixture function

Result returned by fixture function will be used in the appropriate tests

15

Test fixture

@pytest.fixture
def smallrandint():
 … # See previous slide

def test_lower_consistency(smallrandint):
 "Consistency with lower factorial"
 nn = smallrandint
 factn = mymath.factorial(nn)
 assert factn == nn * mymath.factorial(nn - 1)

def test_upper_consistency(smallrandint):
 "For consistency with upper factorial"
 nn = smallrandint
 factn = mymath.factorial(nn)
 assert mymath.factorial(nn + 1) == (nn + 1) * factn

Calls fixture smallrandit()
and initializes argument
with its return value

Argument name must
match fixture function
name

16

Useful functions when comparing arrays

● When two arrays (or an array and an integer) are compared, the comparison
is made elementwise

● Result: array of logicals with the results of each elementwise comparison

aa = np.array([1, -2, 9])
aa < 0 [False True False]

np.any() Checks whether any elements of an array evaluate to True

np.any(aa < 0)

np.all() Checks whether all elements of an array evaluate to True

np.all(aa < 0)

np.where() Returns elementwise 2nd or 3rd argument depending on
logical values in 1st (True – 2nd, False – 3rd)

np.where(aa < 0, 0, aa)

True

False

[1, 0, 9]

Test coverage

18

Test coverage

● Indicates which amount of the total code lines have been executed at
least ones during the tests.

● Desirable: 100%

● Note: 100% coverage does not mean bug free code!
It only means, that each line has been reached at least once during
some tests. The code still can misbehave, if given line is executed with
different (non-tested) data.

19

Collect coverage data

python3-coverage run --source=. -m pytest

============================ test session starts ...
platform linux -- Python 3.5.2, ...
rootdir: /home/aradi/pyprojects/linsolver, inifile:
plugins: cov-2.2.1
collected 2 items

test_solvers.py ..

Run python application and
collect coverage information

Only look for coverage of source files
in current folder (otherwise coverage of
3rd party modules is also collected)

Import pytest module on start-up

(starts automatic test discovery
and testing)

● python3-coverage (sometimes only coverage) can collect coverage data
while running a Python application

● It can be used together with Pytest to collect coverage info during testing
(provided the coverage plugin for Pytest is installed)

20

Short summary on the console

Visualize coverage data

python3-coverage report -m
Name Stmts Miss Cover Missing
--
solvers 25 1 96% 23
test_solvers 25 0 100%
--
TOTAL 50 1 98%

Line number of line(s)
not executed during any
test (missing)

Coverage in
percentage of
code lines
(statements)

Number of statements
(executable code lines)

21

Visualize coverage data

python3-coverage html -d coverage_html
firefox coverage_html/index.html

Detailed coverage information in HTML

Directory where
HTML pages
should be stored

Apparently none of the
tests contained a linearly
dependent system of
equations …

Code quality analysis

23

Code analysis with pylint

● Pylint reads Python source files and checks for possible convention
breaches, inconsistencies and errors

● It produces a score for “code quality” (how much the code aligns to pylints
guidelines)

pylint3 solvers.py
Running pylint from command line
● Pass file name to the pylint program

Running pylint from Spyder
● Pressing F8 activates Pylint analysis

● Results appear in the right upper
window

● By clicking on the list items, the
corresponding line is shown in the
editor

24

Configuring pylint

● Pylint reads the ~/.pylintrc configuration file, if present

● Behaviour of pylint can be customized globally through the config file

Some customization suggestions

● Let pylint enable variable names with two letters

● Disable call check for numpy functions and classes
(pylint often does fails to find the definitions in the numpy module)

Download the pylint configuration file from the
course website and store it as ~/.pylintrc

Disabling a check locally (for a file or a line)

● You can disable a given check locally by special comments:

pylint: disable=W0621 Disables warning W0621 for
the given file/line containing
the comment

25

Configuring Spyder

Tools / Preferences / Editor / Advanced settings

● Set up Spyder to remove trailing spaces automatically
(to avoid lots of Pylint warnings about convention breaches)

Only use this, if all participant of your project have set up their editors similarly!

26

Python coding standard (PEP8)

● Python has a widely accepted coding style guide

● It has been documented in the Python Enhancement Proposal 8 (PEP 8)

● Most Python projects stick to that standard

● Do not deviate from it without very-very good reasons

● Spyder can set up to check for PEP 8 conformance (recommended)

Tools / Preferences / Code Introspection

Set up
Spyder to
check
for PEP 8
compliance!

https://www.python.org/dev/peps/pep-0008/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

