
9 – Coordinating parallel development with Git

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

https://www.bccms.uni-bremen.de/cms/people/b-aradi/wissen-progr/python/2022

2

Outline

● One repository, multiple branches

One developer

Multiple developers with write access to the same repository

● Multiple repositories, multiple branches
Multiple developers with read-only access to each-others repositories
(typical scenario for distributed open source development)

One repository, multiple branches

4

Branch & merge in one repository

● Multiple independent features are explored at the same time

● A bug has to be fixed in an older version of the code (e.g. last release)
without exposing unmature/unfinished new features

master

feature1
feature2

branch

merge

merge

branch

Parallel development of features:

Typical workflow ● Features are implemented in branches
(independent development histories)

● Branches start from the actual state of the
main (master) project

● Every new feature / significant change
gets its own branch

● If implementation finished, changes are
added (merged) to main project

● Conflicting changes in parallel branches
(e.g. same lines changed), must be
manually resolved (during merge).

5

Branch & merge in one repository (#1)

mkdir -p ~/gitdemo/one/hello
cd !$
git init

Create hello.py with following content: print("Hello!")

git add hello.py
git ci -m "Initial checkin"

git branch cleanup

git co cleanup
Switched to branch 'cleanup'

git branch

* cleanup

 master

Last argument ($) of last command (!)

Creating repository

Creating branch “cleanup”

Changing to branch “cleanup”

Shows all branches and marks actual one

“cleanup”, “master” point to same commit

6

Branch & merge in one repository (#2)

def main():
 print("Hello!")

if __name__ == "__main__":
 main()

Change content of hello.py

git add -u
git ci -m "Wrap script in main() routine"

git add README.rst
git ci -m "Add readme file"

Hello

Trivial greeting projectto demonstrate
the usage of multiple git branches.

Create README.rst

Developing on branch “cleanup”

Branch name = Named pointer pointing to a given
commit (usually last one) in a development line

Pointer “cleanup” (actual branch) has been
propagated, “master” remains unchanged

7

Branch & merge in one repository (#3)

git co master
Switched to branch 'master'

git co -b extend

Switched to a new branch 'extend'

Content of hello.py changed back to the state as in the master branch:

print("Hello!")

File README.rst does not exist
(it only exists in the cleanup branch, but not in master)

Changing back to “master” branch

Creating a new branch “extend” from the state of the project on “master”

8

Branch & merge in one repository (#4)

Change content of hello.py to: print("Hello, World!")

git add -u
git ci -m "Extend greeting"

Change content of hello.py to: print("Hello, World!")
print("How are you doing?")

git add -u
git ci -m "Make greeting more polite"

Developing on branch “extend”

Branches “extend”
and “cleanup” diverge

9

Branch & merge in one repository (#5)

git co master

Switched to branch 'master'

git merge cleanup

Updating b97c415..d66bbe7
Fast-forward

git branch -d cleanup
Deleted branch cleanup
(was d66bbe7).

Merging changes from first branch to main project

Commit pointed by “cleanup” can be reached from commit pointed by
“master” by going only forward in time: Pointer “master” has been
simply forwarded to point to “cleanup” (fast forward)

Deleting unnecessary pointer (not the commit) “cleanup” (all commits until “cleanup” are
contained in the history of the commit pointed by “master”)

10

Branch & merge in one repository (#6)

git co master
git merge extend

Auto-merging hello.py

CONFLICT (content): Merge conflict in hello.py
Automatic merge failed; fix conflicts and then commit the
result. <<<<<<< HEAD

def main():
 print("Hello!")

if __name__ == "__main__":
 main()
=======
print("Hello, World!")

print("How are you doing?")
>>>>>>> extend

Merging changes from second branch to main project

Just to make sure we are on the master branch

● The same lines have been
changed on master (due to
merge of branch “cleanup”) and
on branch “extend”

● Git can not apply both changes
simultaneously

● Conflict must be solved
manually

● Conflicts are marked in the file

hello.py

11

Branch & merge in one repository (#7)

<<<<<<< HEAD

def main():
 print("Hello!")

if __name__ == "__main__":
 main()
=======
print("Hello, World!")
print("How are you doing?")
>>>>>>> extend

def main():
 print("Hello, World!")
 print("How are you doing?")

if __name__ == "__main__":
 main()

Fix merge conflicts and commit merge

git add hello.py
git ci

Conflicting change on
current (master) branch

Conflicting change on
branch being merged
(“extend”)

Manually resolved version

Tells git that conflict has
been manually resolved

Commits merge (changes from branch +
manual changes for conflict resolution)

12

Branch & merge in one repository (#8)

git branch -d extend

Deleted branch extend (was 779ffb1).

Deleting superfluos pointer, since
commits on “extend” has been
merged into master → they are
part of the history of the commit
where “master” points to (they can
be reached from “master” by going
only backwards in time)

Master branch contains all changes from both feature branches
+ all changes necessary to resolve the conflicts between them

13

Fast forward vs. explicit merge commit

Advantages of fast-forward merges

● No extra merge commits in the logs

● Keeps git-history linear (some projects prefer such history…)

Advantages of explicit merge commits

● It is clear, where the changes came from (feature branch)

● Feature can be easily removed (by removing/reverting) merge commit

14

Forcing merge commits

git merge --no-ff cleanup

Merge made by the
'recursive' strategy.

git merge --no-ff extend

Auto-merging hello.py

CONFLICT (content): Merge
conflict in hello.py

Fix conflict in hello.py

git add hello.py
git ci

● The --no-ff option forces an
explicit merge commit, even if
fast forward were possible

Fast forward not possible here, git automatically makes merge
commit here, but option can still be set.

Multiple repositories, multiple branches

16

Branch & merge in two repositories

● Program is developed by multiple developers simultaneously

● There is one “official” (upstream) version of the project with main
developer(s) (developer(s) in charge) and several contributors.

● Parties have only read-only access to each others repositories

Typical scenario (e.g. open source projects)

Typical workflow

● Every developer regularly synchronizes master to keep it identical
to upstream/master

● Each developer implements features in feature branches derived
from his/her master branch

● The master branch of the contributors is never modified directly,
only by synchronization with upstream master

● If feature finished, main developer pulls contributors feature
branch and merges it into upstream master

17

Branch & merge in two repositories

master

feature1

master

feature2

upstream contrib

clone

pull
(upstream/master
→ contrib/master)

pull
(contrib/feature2

→ upstream/master)

pull
(upstream/master
→ contrib/master)

Brings feature branch up-to-
date with upstream/master
(ensures it contains all
changes which happened on
upstream/master)
→ no conflict should arrise if
feature branch is merged into
upstream/master)

Merge
(contrib/master
→ contrib/feature2)

● Workflow works very well also with large nr. of contributors

18

Branch & merge in two repositories (#1)

Main developer: create “official” reporitory

mkdir -p ~/gitdemo/multi/upstream/hello
cd !$
git init

Create hello.py with following content: print("Hello!")

git add hello.py
git ci -m "Initial checkin"

Contributor: clone “official” repository

mkdir -p ~/gitdemo/multi/contrib1
cd !$
git clone -o upstream ~/gitdemo/multi/upstream/hello

Cloning into 'hello'...

Points to the position of
master in current repo

Points to the position of
master in upstream repo

How we refer to cloned
repository (default: origin)

19

Branch & merge in two repositories (#2)

Main developer: develop feature in feature branch and merge into master

git branch cleanup

git co -b cleanup

Switched to a new branch 'cleanup'

def main():
 print("Hello!")

if __name__ == "__main__":
 main()

Change content of hello.py to:

git add -u
git ci -m "Wrap script in main() routine"

20

Branch & merge in two repositories (#3)

git add README.rst
git ci -m "Add readme file"

Hello

Trivial greeting project to demonstrate
the usage of multiple git branches.

Create README.rst
with following content:

git co master
git merge --no-ff cleanup
git branch -d cleanup

Optional, in case you want
to avoid fast-forward

21

Branch & merge in two repositories (#4)

Contributor: develop feature in a branch

git co master

git co -b extend

Switched to a new branch 'extend'

Change content of hello.py to: print("Hello, World!")

git add -u
git ci -m "Extend greeting"

22

Branch & merge in two repositories (#5)

Change content of hello.py to: print("Hello, World!")

print("How are you doing?")
git add -u
git ci -m "Make greeting more polite"

Contributor: synchronize master branch with upstream master

git co master

git pull --ff-only upstream master

Fast-forward only: Would fail
if master had been modified
apart of being pulled from
upstream/master

→ Master of developer 2 identical to upstream/master

23

Branch & merge in two repositories (#6)

Contributor: merge master into feature branch, fix eventual conflicts

git co extend

git merge master
CONFLICT (content): Merge conflict in hello.py

<<<<<<< HEAD
def main():
 print("Hello!")

if __name__ == "__main__":
 main()
=======
print("Hello, World!")
print("How are you doing?")
>>>>>>> extend

def main():
 print("Hello, World!")
 print("How are you doing?")

if __name__ == "__main__":
 main()

git add hello
git ci

[extend 2825180] Merge branch 'master' into extend

24

Branch & merge in two repositories (#7)

● Updated feature branch now contains all changes from the
original feature branch as well as all changes happened on
upstream/master since the feature branch was created

Feature branch
changes

Parallel changes
on master

Current feature branch head containing both change sets

→ Feature branch is ready to be merged into upstream/master
 without any conflicts (as they had been resolved by developer 2)

→ Issue pull request: Ask main developer to pull and merge the
updated feature branch into upstream/master

25

Branch & merge in two repositories (#7)

Main developer: Fetch and investigate changes from contributor

git remote add contrib ../../contrib/hello
git remote -v

contrib ../../contrib/hello (fetch)
contrib ../../contrib/hello (push)

git fetch contrib extend

From ../../contrib/hello
 * branch extend -> FETCH_HEAD
 * [new branch] extend -> contrib/extend

git co extend

Branch 'extend' set up to track remote branch
'extend' from 'contrib'.
Switched to a new branch 'extend'

Register contributors
repository (needed only once)

Fetch content of “extend”
branch from contrib repository

Check out contrib/extend as extend for further inspection

26

Branch & merge in two repositories (#8)

● Main developer has an exact local copy of contributors feature branch

Main developer: merge feature branch into upstream/master

git co master
git merge --no-ff extend
git branch -d extend

→ Upstream/master contains all previous commits
+ changes from contributor

27

Branch & merge in two repositories (#9)

Contributor: sync master branch with upstream/master

Master branch absolultely indentical to upstream/master!

git co master
git pull --ff-only upstream master

git branch -d extend

28

Publishing a repository

Publish repository, so that others can clone it and pull from it

● Allow read-access to repository in local file system (multi-user environment)

● Upload repository to public file-/webserver

● Send repository (including .git/) as an archive

● Allow access via git daemon (see “man git-daemon”, be careful with it!)

● Publish repository on a git hosting site (e.g. GitHub, GitLab, Bitbucket)

● Very convenient and de-facto standard for open-source projects

● Note: Those site are commercial ones (with commercial interests),
but usually offer free of charge services for private persons, students,
etc.

● Run your own git hosting infrastructure (e.g. self-hosted GitLab)

https://www.github.com/
https://www.gitlab.com/
https://www.bitbucket.org/

29

Remote git-hosting

Cloud
Upstream
repository

Contributors
repository

fork

Local
machine

Upstream
repository

Main developer Contributor

pull push

Contributors
repository

pull push

pull pull

● Public git hosting sites use the “fork-pull-push” workflow

● Similar to “branch & merge in two repositories”

● Local repository is “published” via push to public hosting site

● Changes from other repositories are imported via pulls from the public
repositories at the hosting site

Local
machine

30

Some random final git notes

● Git is very flexible and powerful, allowing for almost arbitrary workflow
→ Most project document their git-workflow (e.g. DFTB+ git-workflow)
→ If you start your own project, pick a common one (e.g. GitHub flow)!

● Public git-hosting sites are usually offering very good tutorials on git and
git-workflows (see for example GitHub guides)

● The free “git book” Pro Git contains an excellent introduction to git.

● Instead of merging a source branch into a target one, one can also
rebase the target branch upon the source branch. (Rebasing is not trivial,
so make sure you understand its consequences, before you do it.)

https://dftbplus-develguide.readthedocs.io/en/latest/gitworkflow.html
https://guides.github.com/introduction/flow/
https://guides.github.com/
https://git-scm.com/book/en/v2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

