
1 – Python basics

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

2

Outline

● About Python

● Basic (scalar) data types

● Control structures

3

Python

● Invented/Created by Guido von Rossum 1989
● Has a huge community
● De facto standard script language for scientific applications

(though Julia is becoming a possible alternative)
● Python is an interpreted language

● Fast development (less code, no compilation necessary)
● Often much slower than compiled languages

(though, speed critical parts can be written in C/C++/Fortran)

Python 2Python 3

● actively developed
● “cleaned up” version of Python 2
● Introduced backwards incompatible changes

● Deprecated (support ended in 2020)
● don’t use it for new projects

4

Learning Python

Internet

Books

● M. Lutz: Learning Python (very-very detailed)
● M. Lutz: Programming Python (programming techniques)
● L. Ramalho: Fluent Python (advanced level)
● :

● Official Python documentation, especially Tutorial and Library Reference:
https://docs.python.org/3/

● Real Python
● Dive into Python (for advance learner, very good for OO-concepts)
● Newsgroups, mailing lists, stackoverflow, etc.
● :

https://docs.python.org/3/
https://realpython.com/
http://www.diveintopython3.net/

5

Data types

Immutable data types

● Can not be changed once they have
been created

● You must create a new (changed)
instance if you want to change them

● Examples: bool (True, False), integer,
float, string, tuple, frozen set, etc.

Mutable data types

● Their content can be changed after their
creation

● Examples: list, set, dictionary, file, etc.
● Handling of mutable data types can have

certain “side-effects”

6

Integers (int)

● Range: arbitrary
● If value is beyond the long int data type in C (2**63 on 64 bit

machines), operations become rather slow (runs emulated, not
natively)

%%timeit -r 10
num = 2**3625
for ii in range(63):
 num *= 2

%%timeit -r 10
num = 2**0
for ii in range(63):
 num *= 2

Compare

Runs the cell a given
amount of time and
measures execution
time

% Jupyter kernel “magic” commands

7

Floating point numbers (float, complex)

Real numbers Complex numbers

● The same as double type in C
● Range: +/-1E-323 – +/-1E+308
● Precision: 16 digits

● Can be entered either in fixed or in
expontential notation

>>> 0.123
0.123
>>> 1.23E-1
0.123
>>> 9e-1300
0
>>> 9e1000
inf

● Represented by a pair of real numbers
● Real and imaginary part have the same

range then usual real numbers
● Input as RealPart + ImaginaryPartJ

>>> 2.0 + 3.3j
(2+3.3j)

8

Arithmetic operators

>>> 1 + 2
3
>>> 3 - 4
-1
>>> 5 * 6
30
>>> 5 / 2
2.5

+ Addition
- Substraction
* Multiplication
/ Division
// Integer division
% Division remainder
- Negation
** Power

>>> 5 // 2
2
>>> 5 % 2
1
>>> -8
-8
>>> 2**0.5
1.4142135623730951

9

Relation operators

>>> 3 == 2
False
>>> 3 != 2
True
>>> 3 < 2
False
>>> 3 > 2
True
>>> 3 >= 2
True
>>> 3 <= 2
False

== equal
!= unequal
< less
<= less equal
> greater
>= greater equal

Comparison gives bool type
as result (True/False)

Error: Complex numbers can not be ordered

Comparing with == or != is OK

>>> 3.0+2j == 3.0+3j
False
>>> 3.0+2j != 3.0+3j
True
>>> 3.0+2j < 2.0-1.2j
Traceback (most recent call...

10

Booleans (bool) & logical operators

● They are actually numbers, only shown differently
● False: 0, True: 1

>>> True
True
>>> False
False
>>> 2 * True
2

● Logical AND (True if both operands True)
● Logical OR (True if any of the operands True)
● Logical NOT (Negates operand)

>>> True and False
False
>>> False or True
True
>>> not True
False

● In Python each object can serve as a logical value (details later)

Logical operators

11

Assignment

● An object (e.g. result of an operation) gets a name assigned
(variable name)

● Name = Object
Name points to / aliases Object

● Name1 = Name2
Name1 points to the same object which Name2 points to

● When using a variable name in an expresssion, it will be
substituted with the object it points to.

● There are no “classic” variables in Python, just pointers /
aliases!

>>> a = 1
>>> a
1
>>> b = a
>>> b
1
>>> a = 2
>>> a
2
>>> b
1
>>> a + b
3

Name Object

a 1

a
b

1

a
b

1
2

12

>>> longstr = """First line
... followed by the second"""
>>> longstr
'First line\nfollowed by the second'

Strings
● Strings are specified between

apostrophes or quotes:

>>> name1 = 'john'
>>> name2 = "tom"
>>> name1
'john'
>>> name2
'tom'

● Multilne strings can be specified between triple apostrophes or quotes:

newline character

● Length of a string can be queried
by the len() function:

>>> len(name1)
4

13

Strings
● Parts of a string can be accessed by the [] operator: >>> txt = "some text"

>>> txt[0]
's'
>>> txt[0:4]
'some'
>>> txt[0:9:2]
'sm et'
>>> txt[:4]
'some'
>>> txt[4:]
' text'
>>> txt[8:4:-1]
'txet'
>>> txt[3:3]
''

Elements are enumerated starting with zero

When selecting ranges as [lower:upper], the lower
bound is inclusive the upper bound is exclusive

Range increment can be also specified with
[lower:upper:increment]

When lower bound is omitted, range starts from the very first element
(0 – range increment pos., last – range increment neg.)

When upper bound is omitted, range ends beyond
last element (last element is included)

Negative range increment: iterating backwards

Empty range returns empty string

14

Strings

● Strings are immutable, they can not be changed once created:

>>> txt[0] = 'b'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str'...does not support item assignment

● Strings can be concatenated by the + operator or by whitespace for string literals:

>>> name1 + " " + name2
'john tom'
>>> "str1" "str2"
'str1str2'

>>> "ab" * 3
'ababab'

● Strings can be repeated by the * operator:

15

String formatting, f-strings
● Formatted strings (f-strings): String scontaining expressions with optional formatting options
● Expressions are enclosed in {}

aa = 12
bb = 135
print(f"a = {aa}, b = {bb}") a = 12, b = 135

● Optional formatting options can be specified after the expression, separated by a colon (:)

print(f"a = {aa:3d}\nb = {bb:3d}") a = 12
b = 135

Field width Data typeNewline character

● Data type must match expression type:

cc = 12.35
print(f"c = {cc:4d}")

ValueError: Unknown format code 'd'
for object of type 'float'

16

Few formatting options

:Wd integer number

:W.Pf floating point number in fixed notation

:W.Pe floating point number in exponential notation (with small e)

:W.PE floating point number in exponential notation (with capital E)

:W.Pg :f or :e depending on the value of the floating point

:W.PG :f or :e depending on the value of the floating point

:Ws string (converts given object to a string)

W (width) minimal field width (optional) P (precision) number of decimal places (optional)

ff = 1.2
f"{ff:12.4E}"
f"{ff:12E}"
f"{ff:.4E}"
ss = "ab"
f"{ss:5s}"

' 1.2000E+00'
'1.200000E+00'
'1.2000E+00'

'ab '

Numbers
aligned
right

String aligned left

For further formatting options see the
format specification mini-language

https://docs.python.org/3/library/string.html#formatspec

17

Few remarks on string formatting

● If the field with is too small for the given
represenation, it will be automatically
expanded

num = 123
f"|{num:1d}|" '|123|'

● If you need literal curly braces
in the formatted string, they
must be doubled:

num = 122
f"{{{0:d}}}" '{123}'

● Formatted strings can be created with the .format() method as well
● Expressions are given as parameters of the .format() method

num = 123
"|{:4d}|".format(num) '| 123|'

● Parameters can
be refered by
their position

num1 = 12
num2 = 34
"|{0:d}, {1:d}, {0:d}|".format(num1, num2) '|12, 34, 12|'

0 1

18

Converting data types into each other
● Each data type has a special function, which tries to convert its argument into an object with

the given data type:

int(), float(), complex(), str()

● Argument can have arbitrary data type
● If the conversion fails, an exception is raised (error)

>>> valstr = "3"
>>> int(valstr)
3
>>> int("hello")
Traceback ...ValueError: ...

>>> int(3.2)
3
>>> float("12.1")
12.1
>>> complex("3+2j")
(3+2j)
>>> complex("3.0+2.0j")
(3+2j)

19

Branching

Condition1

Code1

Yes Yes Yes

No No No
Condition2 Condition3

Code2 Code3 CodeDef

if Condition1:
 Code1
elif Condition2:
 Code2
elif Condition3:
 Code3
else:
 CodeDef

● Optional code execution based on condition evaluation

Start of a
nested block

Indentation signalises
nesting

● Nested blocks in Python start with colon (:)
● One should always use 4 spaces as indentation
● End of nested block is signalised by an unindented

statement

20

Indentation in Python

● Indentation is not optional, but part of the language semantics
● Indentation signalises nesting
● Amount of indentation signalises nesting depth
● Each nested block should be indented by exactly 4 space characters
● Inconsistent indentation leads either to syntax error or to wrong code logics

if answer[0] == "y":
 print("OK, you agree")
else:
 print("I see")
 print("You don’t agree")
print("Let’s continue")

Indented, belongs to if-block
(Only executed if answer[0] == “y”)

Indented, belongs to else-block
(Only executed if answer[0] != “y”)

Unindented, outside of if/else block
(Always executed)

● Use an editor which supports Python to ensure proper indentation!

21

If-else expression

● One can choose between two expressions with an if/else construct within an expression
● Use it only for trivial (short) cases

mytype = "pos. semidef" if b >= 0 else "negative"
print("b is of type:", mytype)

true_expression if condition else false_expression

Syntax:

22

Evaluation as bool expression

Object type Evaluated to False Evaluated to True
bool False True

int 0 any other value

float 0.0 any other value

complex 0.0+0.0j any other value

string "" (empty string) contains at least one char.
list [] (empty list) contains at least one element

dict {} (empty dict) contains at least one element

if num % 2:
 print("odd")

● Each object can be evaluated as a bool expression
● Evaluation is type dependent: Numerical types are usually False, if their value is zero.

Container types are usually False, if they are empty

if not num % 2:
 print("even")

if num % 2 != 0 if num % 2 == 0

23

for loop

● Iteration over given values can be realised with a for-loop

for loop_variable in iterable_object:
 loop code

● The iterable object can be anything, which is able to return values one-by-one
(implements the iterator-interface)

● Example: string is iterable, it returns its characters one by one:

name1 = 'john'
for char in name1:
 print("Char: ", char)

Char: j
Char: o
Char: h
Char: n

● If loop variable is not needed, use _ as a placeholder: for _ in range(4):
tt.left(90)
tt.forward(10)

Use the for loop, if
the nr. of iterations is
known in advance

Loop variable
not needed
within the loop

24

Range iterator
● The range() function returns an iterator over integers

range(from, to, step)

● Lower bound is included, upper bound is excluded (as for substring ranges)

range(0, 10, 2) [0, 2, 4, 6, 8]

● If step size is omitted, step is is assumed to be 1

range(0, 4) [0, 1, 2, 3]

● If range() is called with one argument, it is interpreted as upper bound

range(4) [0, 1, 2, 3]

● If selected range is empty, iterator does not return any values

range(4, 4) []

Note: You can use the list
constructor to explicitely
show the values yielded by
an iterator:

list(range(4))

25

for loop: break, continue

● The break and continue statements can be also used within a for-loop
● break: Terminates loop execution a continues after loop-block
● continue: Jumps to loop header and iterates over next item

print("All numbers not divisable by 5:")
for num in range(4, 8):
 if not num % 5:
 continue
 print(num)

4
6
7

for num in range(4, 8):
 if not num % 5:
 break
print("First number divisible by 5:", num)

Num: 5

26

for loop: else

● The else branch of a for-loop is executed, if the loop terminated after having
iterated over all elements (and not due to a break statement)

for num in range(6, 10):
 if not num % 5:
 break
else:
 print("No multiple of 5")

found = False
for num in range(6, 11):
 if not num % 5:
 found = True
 break
if not found:
 print("No multiple of 5")

Equivalent
code

27

while loop

● Repeats a program block as long a condition is fulfilled

while Condition:
 Loop code

● If the condition is not fullfilled (any more), code execution
continues after the while-block

num = 1
while num <= 20:
 print(num)
 num = num * 2
print("First above 20: ", num)

1
2
4
8
16
First above 20: 32

Use the while loop, if the
nr. of iterations is not
known (or is difficult to
determine) in advance

28

while loop: break, continue

while True:
 answer = input("Do you agree (y/n)? ")
 if answer != "y" and answer != "n":
 print("Invalid answer! Try it again!")
 continue
 if answer == "y":
 print("Good answer, thanks!")
 break
 print("Valid answer, but I don't like it!")
print("Nice that we agree!")

● Execution order in loops can be modified:
● break: terminates loop and continues execution after loop block
● continue: jumps back to loop header and evaluates loop condition again

Endless loop, should be exited via break at some point

Reads console
input as string

29

while loop: else

● Optional else-branch of a while loop is executed, if the loop execution was aborted
due to loop condition becoming False (and not due to a break statement)

ii = 0
while ii < 5:
 ii += 1 # ii = ii + 1
 answer = input("Do you agree? (y/n) ")
 if answer == "y" or answer == "n":
 break
else:
 print("Too many invalid answers, I'll assume yes.")
 answer = "y"
print("Your answer was: ", answer)

Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

