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Outline

● About Python

● Basic (scalar) data types

● Control structures
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Python

● Invented/Created by Guido von Rossum 1989
● Has a huge community
● De facto standard script language for scientific applications

(though Julia is becoming a possible alternative)
● Python is an interpreted language

● Fast development (less code, no compilation necessary)
● Often much slower than compiled languages

(though, speed critical parts can be written in C/C++/Fortran)

Python 2Python 3

●  actively developed
● “cleaned up” version of Python 2
● Introduced backwards incompatible changes

● Deprecated (support ended in 2020)
●  don’t use it for new projects
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Learning Python

Internet

Books

● M. Lutz: Learning Python (very-very detailed)
● M. Lutz: Programming Python (programming techniques)
● L. Ramalho: Fluent Python (advanced level)
● :

● Official Python documentation, especially Tutorial and Library Reference:
https://docs.python.org/3/

● Real Python
● Dive into Python (for advance learner, very good for OO-concepts)
● Newsgroups, mailing lists, stackoverflow, etc.
● :

https://docs.python.org/3/
https://realpython.com/
http://www.diveintopython3.net/
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Data types

Immutable data types

● Can not be changed once they have 
been created

● You must create a new (changed) 
instance if you want to change them

● Examples: bool (True, False), integer, 
float, string, tuple, frozen set, etc.

Mutable data types

● Their content can be changed after their 
creation

● Examples: list, set, dictionary, file, etc.
● Handling of mutable data types can have 

certain “side-effects”
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Integers (int)

● Range: arbitrary
● If value is beyond the long int data type in C (2**63 on 64 bit 

machines), operations become rather slow (runs emulated, not 
natively)

%%timeit -r 10
num = 2**3625
for ii in range(63):
    num *= 2

%%timeit -r 10
num = 2**0
for ii in range(63):
    num *= 2

Compare

Runs the cell a given 
amount of time and 
measures execution 
time

% Jupyter kernel “magic” commands
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Floating point numbers (float, complex)

Real numbers Complex numbers

● The same as double type in C
● Range: +/-1E-323 – +/-1E+308
● Precision: 16 digits

● Can be entered either in fixed or in 
expontential notation

>>> 0.123
0.123
>>> 1.23E-1
0.123
>>> 9e-1300
0
>>> 9e1000
inf

● Represented by a pair of real numbers
● Real and imaginary part have the same 

range then usual real numbers
● Input as RealPart + ImaginaryPartJ

>>> 2.0 + 3.3j
(2+3.3j)
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Arithmetic operators

>>> 1 + 2
3
>>> 3 - 4
-1
>>> 5 * 6
30
>>> 5 / 2
2.5

+ Addition
- Substraction
* Multiplication
/ Division
// Integer division
% Division remainder
- Negation
** Power

>>> 5 // 2
2
>>> 5 % 2
1
>>> -8
-8
>>> 2**0.5
1.4142135623730951
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Relation operators

>>> 3 == 2
False
>>> 3 != 2
True
>>> 3 < 2
False
>>> 3 > 2
True
>>> 3 >= 2
True
>>> 3 <= 2
False

== equal
!= unequal
< less
<= less equal
> greater
>= greater equal

Comparison gives bool type 
as result (True/False)

Error: Complex numbers can not be ordered

Comparing with == or != is OK

>>> 3.0+2j == 3.0+3j
False
>>> 3.0+2j != 3.0+3j
True
>>> 3.0+2j < 2.0-1.2j
Traceback (most recent call... 
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Booleans (bool) & logical operators

● They are actually numbers, only shown differently
● False: 0, True: 1

>>> True
True
>>> False
False
>>> 2 * True
2

● Logical AND (True if both operands True)
● Logical OR (True if any of the operands True)
● Logical NOT (Negates operand)

>>> True and False
False
>>> False or True
True
>>> not True
False

● In Python each object can serve as a logical value (details later)

Logical operators
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Assignment

● An object (e.g. result of an operation) gets a name assigned 
(variable name)

● Name = Object
Name points to  / aliases Object

● Name1 = Name2
Name1 points to the same object which Name2 points to

● When using a variable name in an expresssion, it will be 
substituted with the object it points to.

● There are no “classic” variables in Python, just pointers / 
aliases!

>>> a = 1
>>> a
1
>>> b = a
>>> b
1
>>> a = 2
>>> a
2
>>> b
1
>>> a + b
3

Name Object

a 1

a
b

1

a
b

1
2
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>>> longstr = """First line
... followed by the second"""
>>> longstr
'First line\nfollowed by the second'

Strings
● Strings are specified between 

apostrophes or quotes:

>>> name1 = 'john'
>>> name2 = "tom"
>>> name1
'john'
>>> name2
'tom'

● Multilne strings can be specified between triple apostrophes or quotes:

newline character

● Length of a string can be queried 
by the len() function:

>>> len(name1)
4
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Strings
● Parts of a string can be accessed by the [] operator: >>> txt = "some text"

>>> txt[0]
's'
>>> txt[0:4]
'some'
>>> txt[0:9:2]
'sm et'
>>> txt[:4]
'some'
>>> txt[4:]
' text'
>>> txt[8:4:-1]
'txet'
>>> txt[3:3]
''

Elements are enumerated starting with zero

When selecting ranges as [lower:upper], the lower 
bound is inclusive the upper bound is exclusive

Range increment can be also specified with 
[lower:upper:increment]

When lower bound is omitted, range starts from the very first element 
(0 – range increment pos., last – range increment neg.)

When upper bound is omitted, range ends beyond 
last element (last element is included)

Negative range increment: iterating backwards

Empty range returns empty string
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Strings

● Strings are immutable, they can not be changed once created:

>>> txt[0] = 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'str'...does not support item assignment

● Strings can be concatenated by the + operator or by whitespace for string literals:

>>> name1 + " " + name2
'john tom'
>>> "str1" "str2"
'str1str2'

>>> "ab" * 3
'ababab'

● Strings can be repeated by the * operator:
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String formatting, f-strings
● Formatted strings (f-strings): String scontaining expressions with optional formatting options
● Expressions are enclosed in {}

aa = 12
bb = 135
print(f"a = {aa}, b = {bb}") a = 12, b = 135

● Optional formatting options can be specified after the expression, separated by a colon (:)

print(f"a = {aa:3d}\nb = {bb:3d}") a =  12
b = 135

Field width Data typeNewline character

● Data type must match expression type:

cc = 12.35
print(f"c = {cc:4d}")

ValueError: Unknown format code 'd' 
for object of type 'float'
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Few formatting options

:Wd integer number

:W.Pf floating point number in fixed notation

:W.Pe floating point number in exponential notation (with small e)

:W.PE floating point number in exponential notation (with capital E)

:W.Pg :f or :e depending on the value of the floating point

:W.PG :f or :e depending on the value of the floating point

:Ws string (converts given object to a string)

W  (width) minimal field width (optional)  P  (precision) number of decimal places (optional)

ff = 1.2
f"{ff:12.4E}"
f"{ff:12E}"
f"{ff:.4E}"
ss = "ab"
f"{ss:5s}"

'  1.2000E+00'
'1.200000E+00'
'1.2000E+00'

'ab   '

Numbers 
aligned
right

String aligned left

For further formatting options see the 
format specification mini-language

https://docs.python.org/3/library/string.html#formatspec
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Few remarks on string formatting

● If the field with is too small for the given 
represenation, it will be automatically 
expanded

num = 123
f"|{num:1d}|" '|123|'

● If you need literal curly braces 
in the formatted string, they 
must be doubled:

num = 122
f"{{{0:d}}}" '{123}'

● Formatted strings can be created with the .format() method as well
● Expressions are given as parameters of the .format() method

num = 123
"|{:4d}|".format(num) '| 123|'

● Parameters can 
be refered by 
their position

num1 = 12
num2 = 34
"|{0:d}, {1:d}, {0:d}|".format(num1, num2) '|12, 34, 12|'

0 1
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Converting data types into each other
● Each data type has a special function, which tries to convert its argument into an object with 

the given data type:

int(), float(), complex(), str()

● Argument can have arbitrary data type
● If the conversion fails, an exception is raised (error)

>>> valstr = "3"
>>> int(valstr)
3
>>> int("hello")
Traceback ...ValueError: ...

>>> int(3.2)
3
>>> float("12.1")
12.1
>>> complex("3+2j")
(3+2j)
>>> complex("3.0+2.0j")
(3+2j)
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Branching

Condition1

Code1

Yes Yes Yes

No No No
Condition2 Condition3

Code2 Code3 CodeDef

if Condition1:
    Code1
elif Condition2:
    Code2
elif Condition3:
    Code3
else:
    CodeDef

● Optional code execution based on condition evaluation

Start of a 
nested block

Indentation signalises 
nesting

● Nested blocks in Python start with colon (:)
● One should always use 4 spaces as indentation
● End of nested block is signalised by an unindented 

statement



20

Indentation in Python

● Indentation is not optional, but part of the language semantics
● Indentation signalises nesting
● Amount of indentation signalises nesting depth
● Each nested block should be indented by exactly 4 space characters
● Inconsistent indentation leads either to syntax error or to wrong code logics

if answer[0] == "y":
    print("OK, you agree")
else:
    print("I see")
    print("You don’t agree")
print("Let’s continue")

Indented, belongs to if-block
(Only executed if answer[0] == “y”)

Indented, belongs to else-block
(Only executed if answer[0] != “y”)

Unindented, outside of if/else block
(Always executed)

● Use an editor which supports Python to ensure proper indentation!
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If-else expression

● One can choose between two expressions with an if/else construct within an expression
● Use it only for trivial (short) cases

mytype = "pos. semidef" if b >= 0 else "negative"
print("b is of type:", mytype)

true_expression if condition else false_expression

Syntax:
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Evaluation as bool expression

Object type Evaluated to False Evaluated to True
bool False True

int 0 any other value

float 0.0 any other value

complex 0.0+0.0j any other value

string                   "" (empty string)                contains at least one char.
list [] (empty list) contains at least one element

dict {} (empty dict) contains at least one element

if num % 2:
    print("odd")

● Each object can be evaluated as a bool expression
● Evaluation is type dependent: Numerical types are usually False, if their value is zero. 

Container types are usually False, if they are empty

if not num % 2:
    print("even")

if num % 2 != 0 if num % 2 == 0
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for loop

● Iteration over given values can be realised with a for-loop

for loop_variable in iterable_object:
    loop code

● The iterable object can be anything, which is able to return values one-by-one 
(implements the iterator-interface)

● Example: string is iterable, it returns its characters one by one:

name1 = 'john'
for char in name1:
    print("Char: ", char)

Char:  j
Char:  o
Char:  h
Char:  n

● If loop variable is not needed, use _ as a placeholder: for _ in range(4):
tt.left(90)
tt.forward(10)

Use the for loop, if 
the nr. of iterations is 
known in advance

Loop variable 
not needed 
within the loop
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Range iterator
● The range() function returns an iterator over integers

range(from, to, step)

● Lower bound is included, upper bound is excluded (as for substring ranges)

range(0, 10, 2) [0, 2, 4, 6, 8]

● If step size is omitted, step is is assumed to be 1

range(0, 4) [0, 1, 2, 3]

● If range() is called with one argument, it is interpreted as upper bound

range(4) [0, 1, 2, 3]

● If selected range is empty, iterator does not return any values

range(4, 4) []

Note: You can use the list 
constructor to explicitely 
show the values yielded by 
an iterator:

list(range(4))
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for loop: break, continue

● The break and continue statements can be also used within a for-loop
● break: Terminates loop execution a continues after loop-block
● continue: Jumps to loop header and iterates over next item

print("All numbers not divisable by 5:")
for num in range(4, 8):
    if not num % 5:
        continue
    print(num)

4
6
7

for num in range(4, 8):
    if not num % 5:
        break
print("First number divisible by 5:", num)

Num:  5
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for loop: else

● The else branch of a for-loop is executed, if the loop terminated after having 
iterated over all elements (and not due to a break statement)

for num in range(6, 10):
    if not num % 5:
        break
else:
    print("No multiple of 5")

found = False
for num in range(6, 11):
    if not num % 5:
        found = True
        break
if not found:
    print("No multiple of 5")

Equivalent 
code
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while loop

● Repeats a program block as long a condition is fulfilled

while Condition:
    Loop code

● If the condition is not fullfilled (any more), code execution 
continues after  the while-block

num = 1
while num <= 20:
    print(num)
    num = num * 2
print("First above 20: ", num)

1
2
4
8
16
First above 20: 32

Use the while loop, if the 
nr. of iterations is not 
known (or is difficult to 
determine) in advance
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while loop: break, continue

while True:
    answer = input("Do you agree (y/n)? ")
    if answer != "y" and answer != "n":
        print("Invalid answer! Try it again!")
        continue
    if answer == "y":
        print("Good answer, thanks!")
        break
    print("Valid answer, but I don't like it!")
print("Nice that we agree!")

● Execution order in loops can be modified:
● break: terminates loop and continues execution after loop block
● continue: jumps back to loop header and evaluates loop condition again

Endless loop, should be exited via break at some point

Reads console 
input as string
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while loop: else

● Optional else-branch of a while loop is executed, if the loop execution was aborted 
due to loop condition becoming False (and not due to a break statement)

ii = 0
while ii < 5:
    ii += 1  # ii = ii + 1
    answer = input("Do you agree? (y/n) ")
    if answer == "y" or answer == "n":
        break
else:
    print("Too many invalid answers, I'll assume yes.")
    answer = "y"
print("Your answer was: ", answer)



Have fun!
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