
2 – Lists and Tuples

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

2

Outline

● Tuples

● Lists

● Quick introduction to functions

3

Tuple

● Sequences of objects of arbitrary data type
● Items within a tuple can have different data type
● Delimited by (and), elements separated by ,

t1 = (1, 3.0, "Hello")
t1
(1, 3.0, 'Hello')

● If non-ambiguous, the delimiters can be omitted

t1 = 1, 3.0, "Hello"

● Empty tuple is specified with ():

t0 = ()
t0
()

● For tuples with one element, a trailing comma
is needed (to avoid ambiguousity):

t1bad = (1)
t1bad
1

t1good = (1,)
t1good
(1,)

● For tuples with more than one elements trailing
comma can be added:

t1multi = (1, 2,)
t1multi
(1, 2)

4

Accessing tuple elements

● Tuple elements, tuple ranges can be accessed
by the [] operator

● Works exactly as for substring/character
selection in strings

t1
(1, 3.0, 'Hello')
t1[0]
1
t1[-1]
'Hello'
t1[1:3]
(3.0, 'Hello')
t1[::-1]
('Hello', 3.0, 1)

t1[0] = 24
… TypeError: …

Negative indices count
elements backwards:
-1 = last element

● Tuples are immutable, and can not be changed
once they have been created

5

Tuple operations

● Tuples can be appended with the + operator t1 = (1, 2, 3)
t2 = (4, 5)
t3 = t1 + t2
t3
(1, 2, 3, 4, 5)

t4 = t2 * 3
t4
(4, 5, 4, 5, 4, 5)

● Number of items in a tuple can be queried by
the len() function:

len(t4)
6

● Tuples can be repeated with the + operator

6

Tuple unpacking

● Components of a tuple can be assigned to individual variables within an assignment

mytuple = (1, 2)
t1, t2 = mytuple
t1
1
t2
2

Assigning entire tuple to one variable

Assigning tuple components to
individual variables

mytuple = (1, 2, 3)
t1, t2 = mytuple
ValueError: too many values to unpack (expected 2)

● The number of variables on the left hand side must be compatible with the tuple length:

7

Lists

● Lists are very similar to tuples, but they are mutable
● Lists are delimited by [and], lists elements are separated by ,
● Element and range selection, len() function, operators + and * work analogously to tuples

l1 = [1, 3.0, 'Hello']
l1
[1, 3.0, 'Hello']
l1[0]
1
l1[-1]
'Hello'
l1[1:3]
[3.0, 'Hello']
l1[::-1]
['Hello', 3.0, 1]

len(t1)
3
l2 = []
len(l2)
0
l3 = [1, 4,]
l4 = l1 + l3
l4
['Hello', 3.0, 1, 1, 4]
l5 = l3 * 2
l5
[1, 4, 1, 4]

8

Modifying lists

l1 = [3, 2, "test", 1.5]
l1
[3, 2, 'test', 1.5]
l1[0] = 42
l1
[42, 2, 'test', 1.5]

● Changing elements

● Changing ranges

l1[0:2] = [1, -1]
l1
[1, -1, 'test', 1.5]
l1[0:4:2] = [0, 0]
l1
[0, -1, 0, 1.5]

● If the range is continuous, it can be replaced
with a list (iterable) of arbitrary size. The size
of the list will change accordingly

l1[0:3] = [9,]
l1
[9, 1.5]
len(l1)
2

● A given element or range can be deleted by the
del statement

del l1[0]
l1
[1.5]

l3 = [1, 2, 3, 4]
del l3[0::2]
l3
[2, 4]

9

List methods

l5 = []
l5.append(1)
l5
[1]

● The extend() method can be used to extend the list by an other list (iterable)

● The append() method can be used to append one element to the list

l5.extend([3, 4, 5])
l5
[1, 2, 3, 4, 5]

● Further methods for list manipulation
● insert(), index(), reverse(), …
● See Python Standard Library documentation: Sequence types

l5.append(2)
l5
[1, 2]

l5 += [4, 5, 6]
l5
[1, 2, 3, 4, 5]

or

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

10

List methods

l5
[1, 2, 3, 4, 5, 6]
3 in l5
True
-1 in l5
False

● Lists can be sorted by the sort() method:

ll = [9, -1, 3, 8, 5]
ll.sort()
ll
[-1, 3, 5, 8, 9]

ll = [9, -1, 3, 8, 5]
ll.sort(reverse=True)
ll
[-1, 3, 5, 8, 9]

● It checks each list element individually,
do not use it for large structures (O(N))

● The in operator can be used to query for the presence of an element in the list

11

List unpacking

● Components of a list can be assigned to individual variables within an assignment

mylist = [1, 2]
l1, l2 = mylist
l1
1
l2
2

mylist = [1, 2, 3, 4]
l1, l2, *ll = mylist
l1
1
l2
2
ll
[3, 4]

Packs remaining entries into a list

● In function calls lists/tuples can be unpacked into arguments:

coords = (0, 10)
pen.goto(*coords) # equiv. to: pen.goto(coords[0], coords[1])

Unpacks entries into individual arguments

12

Assignment of mutable types

● Analogous to immutable types

l1 = [1, 2, 3, 4]
l2 = l1
l1
[1, 2, 3, 4]
l2
[1, 2, 3, 4]

l1 = [3, 4, 5]
l1
[3, 4, 5]
l2
[1, 2, 3, 4]

Name Object

l1 [1, 2, 3, 4]

l1
l2

[1, 2, 3, 4]
[3, 4, 5]

l1 [1, 2, 3, 4]
l2

13

Assignment of mutable types

● If the content of a mutable variable is changed, the change is apparent in all variables, which are
associated with that instance

l1 = [1, 2, 3, 4]
l2 = l1
l1
[1, 2, 3, 4]
l2
[1, 2, 3, 4]

l1[2] = -1
l1
[1, 2, -1, 4]
l2
[1, 2, -1, 4]

Name Object

l1 [1, 2, 3, 4]
l2

l1 [1, 2, -1, 4]
l2

● Efficient, no copy is made
● Watch out for unwanted side effects with

mutable types

14

Assignment of mutable types

● If a copy is needed, it must be explicetly created
● Try to avoid making copies, unless really necessary

l1 = [1, 2, 3, 4]
l2 = list(l1)
l1
[1, 2, 3, 4]
l2
[1, 2, 3, 4]

l1[2] = -1
l1
[1, 2, -1, 4]
l2
[1, 2, 3, 4]

Name Object

l1 [1, 2, 3, 4]
[1, 2, 3, 4]l2

l1 [1, 2, -1, 4]
[1, 2, 3, 4]l2

15

Assignment of mutable types

l1 = [1, 2, 3, 4]
l2 = [-1, -2, -3, -4]
l3 = list([l1, l2])
l3
[[1, 2, 3, 4], [-1, -2, -3, -4]]

l3[0][0] = 9
l3
[[9, 2, 3, 4], [-1, -2, -3, -4]]
l1
[9, 2, 3, 4]

● If you copy a nested mutable object, only top layer is copied (shallow copy)

l1 [1, 2, 3, 4]
[-1, -2, -3, -4]l2

l3 [l1, l2]

l1 [9, 2, 3, 4]
[-1, -2, -3, -4]l2

l3 [l1, l2]

● Function deepcopy() in module copy can be used, if true nested copy is needed

16

In-place operations

● In-place operations store the result of an arithmetic operation in the first operand:

aa = aa + bb
aa = aa - bb
aa = aa * bb
aa = aa / bb
aa = aa // bb

aa += bb
aa -= bb
aa *= bb
aa /= bb
aa //= bb

● For mutable objects it can help to avoid creating unnecessary copies

long = [1, 2, …]
short = [-1, -2]

long = long + short long += short long.extend(short)

Creates temporary copy of long, extends
it with short and replaces long with result

In-place addition
(usually without temporary copy)

Extends list directly without
temporary copy

17

Containers & iterators

● All containers can be used as iterators (e.g. in for-loops)
● Lists and tuples return their elements ordered by their index (position)

ll = [1, "test", 12.6, -1+3j]
for item in ll:
 print("Next item: ", item)

Next item: 1
Next item: test
Next item: 12.6
Next item: (-1+3j)

● Lists and tuples can be created from iterators
● Container will containt iterated elements

list('test')
['t', 'e', 's', 't']

list((1, 2, 3, 4))
[1, 2, 3, 4]

tuple([1, 2, 3, 4])
(1, 2, 3, 4)

Every string can be used as an
iterator over the charaters in it

18

Enumerate

ll = [1, 'test', 12.6, (-1+3j)]

● If within an iteration you need both, the iterator value and the current iteration number
● enumerate() returns a new iterator over tuples containing the current iteration number and the

value from the passed iterator

Item 0: 1
Item 1: test
Item 2: 12.6
Item 3: (-1+3j)

for ind in range(len(ll)):
 print(f"Item {ind:d}: {ll[ind]}")

equivalent

for ind, item in enumerate(ll):
 print(f"Item {ind:d}: {item}")

list(enumerate(ll)) [(0, 1), (1, 'test'), (2, 12.6), (3, (-1+3j))]

19

List comprehension

● Creates list with (slightly) modified or filtered content of an iterator

words = ["Wort", "Word", "WORT", "word"]
loweredwords = [word.lower() for word in words]
loweredwords
['wort', 'word', 'wort', 'word']

nums = [1, 3, 2, 9, 8, 3]
oddsquares = [num**2 for num in nums if num % 2 != 0]
oddsquares
[1, 9, 81, 9]

[expr for itervar in iterator if condition]

filtering is optional

Converts every character in a
string to lowercase

20

Functions in a nutshell

Function (procedure) = reusable code container, which communicates with other parts of
the code only through a well defined interfaces

Calling program
:
Needs the factorial of 5
:

Function starts
Calculates factorial of arbitary number
:
Function ends

calling program suspended,
necessary information passed,
function execution starts

function finished

result passed back

calling program continues

5

120

21

Functions in a nutshell

def factorial(nn):
 """Calculates the factorial of a number.

 Args:
 nn: Number to calculate the factorial of.

 Returns:
 Factorial of the argument.
 """
 result = 1
 for ii in range(2, nn + 1):
 result *= ii
 return result

aa = factorial(5)
aa
120

Name

Argument(s)

Doc-string

Value
returned

Function
code

Calling code

Function definition

22

Functions in a nutshell

def functionname(arg1, arg2, ...):
 """Documentation string"""
 Subprogram statements
 ...
 return result

● Return value is optional

print_greeting("World")
Hello World!

def print_greeting(name):
 print(f"Hello {name}!")

● Multiple arguments are possible

def multiply_numbers(aa, bb):
return aa * bb

product = multiply_numbers(10, 12)
product
120

Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

