
3 – Sets & dictionaries

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023


2

Outline

● Dictionaries

● Sets

● Some string methods



3

Dictionaries

● Store items of arbitrary type
● Items identified by their unique key, not by their position
● Key must be of immutable data type
● Dictionary is delimited by { and }

d1 = {"test1": 1, "test2": "Hello", 12: [1, 2]}
d1
{'test1': 1, 12: [1, 2], 'test2': 'Hello'}

key value key value key value

● Elements can be accessed as in lists, but by 
using their key

d1["test1"]
1
d1[12]
[1, 2]



4

Dictionaries

● Dictionaries are mutable
● If a key is used, which is already present, the item is overwritten

d1["test1"] = 3+4j
d1
{'test1': (3+4j), 12: [1, 2], 'test2': 'Hello'}

● If a key is used, which is not present yet, a new item is created

d1[(-1,)] = 12
d1
{'test1': (3+4j), 12: [1, 2], 'test2': 'Hello', (-1,): 12}

del d1["test2"]
d1
{'test1': (3+4j), 12: [1, 2], (-1,): 12}

● Elements can be deleted by the del statement



5

Dictionaries

● The get() method can be used to obtain an item or a default value if the key is not found

default = -1
key = "missing"
value = d0.get(key, default)

● Trying to access a non-existing key leads to 
an error

d0["missing"]
… KeyError: 'missing

● The in operator can be used to check the 
presence of a key

'test1' in d1
True
"missing" in d1
False

if key in d0:
    value = d0[key]
else:
    value = default



6

Dictionaries as iterators

dd = {12: [1, 2], 'test1': 3.2, (-1,): True}
for key in dd:
    print(f"key: {key}")

key: 12
key: (-1,)
key: test1

● Dictionaries return their keys one by one:

for val in dd.values():
    print(f"value: {val}")

● An iterator over dictionary values can be obtained by the values() method

value: [1, 2]
value: True
value: 3.2

● An iterator over key, value tuples can be obtained by the items() method:

for key, val in dd.items():
    print(f"{key}: {val}")

12: [1, 2]
(-1,): True
test1: 3.2



7

Creating dictionaries

dict([('a', 1), (3.2, 'hello')])

dd = {3.2: 'hello', 'a': 1}

● From a dict-literal

● From an iterable containing (key, value) tuples

● From a dictionary comprehension

nums = [1, 3, 2, 9, 8, 3]
oddsquares = {num: num**2 for num in nums if num % 2 == 1}

{keyexpr: valuexpr for itervar in iterator if condition}

filtering is optional

{3.2: 'hello', 'a': 1}

{3.2: 'hello', 'a': 1}

{1: 1, 3: 9, 9: 81}



8

Sets

● Sets contain only keys (like dictionaries), but 
no values

● Sets are mutable
● All members must be of inmutable type
● Every key (element) is unique and occurs 

only once

s1 = {"test", 12, -3.6, (1,2)}
s1
{(1, 2), 12, -3.6, 'test'}

● Elements can be added by the add() method

s1.add(True)
s1
{(1, 2), True, 12, -3.6, 'test'}

● Adding an already existing element to the set 
leaves it unchanged:

s1.add("test")
s1
{(1, 2), True, 12, -3.6, 'test'}



9

Sets

● Elements can removed by the remove() method s1.remove(-3.6)
s1
{(1, 2), True, 12, 'test'}

● The in operator can be used to check the 
presence of an element

s1
{(1, 2), True, 12, 'test'}
12 in s1
True
13 in s1
False



10

Sets as iterators

● Sets return their elements one by one, but the order is undetermined: 

s1 = {True, 12, 'test', (1, 2)}
for item in s1:
    print('Item:', item)

Item: (1, 2)
Item: True
Item: 12
Item: test



11

Creating sets

set([1, 9, (3, 4), False, 8.2])

st = {1, 9, (3, 4), False, 8.2}

● From a set-literal

● From an iterable containing (key, value) tuples

● From a set-comprehension

nums = [1, 3, 2, 9, 8, 3]
oddsquares = {num**2 for num in nums if num % 2 == 1}

{expr for itervar in iterator if condition}

filtering is optional

{1, 9, (3, 4), False, 8.2}

{1, 9, (3, 4), False, 8.2}

{1: 1, 3: 9, 9: 81}



12

Containers – overview

Lists
● Ordered
● Elements indexed by sequential integer 

(position)
● Index of a given element might change when 

other elements are inserted/deleted
● Fast O(1) access by index
● Slow O(N) access by value

Dictionaries
● Unordered (ordered for Python > 3.7)
● Elements indexed by key (arbitrary inmutable 

object)
● Index of given element remains unchanged 

when other elements are inserted/deleted
● Fast O(1) by key
● Slow O(N) access by value

Sets
● Unordered
● Elements are unique
● Fast O(1) access for checking element 

presence



13

Containers – access times

import random
MAX_NUM = 10000000

random_list = [random.randint(0, MAX_NUM – 1)
               for _ in range(MAX_NUM)]
random_set = set(random_list)

%%timeit
MAX_NUM in random_list

%%timeit
MAX_NUM in random_set

Note: choice of the container type might seriously affect performance

compare 
execution 

times!



14

Comparing containers

● Equality of containers can be checked with == and != operators
● Two containers are equal, if all elements and their keys/indices are equal

{'key1': 1, 'key2': 2} == {'key2': 2, 'key1': 1}
{'key1': 9, 'key2': 2} == {'key2': 2, 'key1': 1}

True
False

● Ordered (sequence) types (lists, tuples, but not dicts) can also be compared by >, >=, <, <=
● The comparison is done component-wise

(1, 2, 3) > (1, 2, 4)
(9, "ahoi") > (6, "hello")

False
True

ll = [(9, "ahoi"), (6, "hello")]
ll.sort()
ll

● The same ordering rules are applied in 
internal routines, like sorting:

● The first non-matching component 
determines the relation

[(6, 'hello'), (9, 'ahoi')]



15

Some string methods

"a,b,c,d".split(",")
['a', 'b', 'c', 'd']

"One short line.\nOne more.".split()
['One', 'short', 'line.', 'One',
'more.']

split(separator)
● Splits a string into pieces using a given 

delimiter

● If no delimiter is specified, the string is split 
by any whitespace characters (space, tab, 
newline)

split(separator)

join(iterator)

● Joins the elements of the iterator into a string 
using the string as delimiter

● All elements returned by the iterator must be 
strings

", ".join(["word1", "word2", "word3"])
'word1, word2, word3'



16

Some string methods

"Word".lower()
'word'
words = ["Apfel", "Birne"]
[word.lower() for word in words]
['apfel', 'birne']

● Converts all characters in a string to 
lower/upper case

lower(), upper()

" word ".lstrip()"
'word '
" word ".rstrip()
' word'
" word ".strip()
'word'

● Removes whitespace characters from left, 
right and both sides of a string

lstrip(), rstrip(), strip()



17

Some string methods

txt = "However, the sky was dark."
txt.replace("was", "is")
'However, the sky is dark.'
txt.replace(",", "")
'However the sky was dark.'

● Replaces all occurances of a substring with 
a given replacement

replace()

● The result of all string methods is always a new string (strings are immutable)
● If the result should be manipulated further by a string method, the methods can be “chained”

txt_new = txt.replace("was", "is").replace(",", "")

txt2 = txt.replace("was", "is")
txt_new = txt2.replace(",", "")

For further sting methods, see the Python Library Docs (String methods)

For non-trivial replacements regular expressions might be more suitable

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/re.html


Have fun!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

