3 — Sets & dictionaries

Balint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

—aBCCMS Universitat

Center for . Computational Materials Science Bremen

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

. Outline

* Dictionaries
e Sets

e Some string methods

. Dictionaries

Store items of arbitrary type

Key must be of immutable data type

Dictionary is delimited by { and }

Items identified by their unique key, not by their position

dl = {"testl": 1, "test2": "Hello", 12: [1, 2]}
dl
{'testl': 1, 12: [1, 2], 'test2': 'Hello'}
key value key value value
* Elements can be accessed as in lists, but by di["testl"]
using their key 1
dil[12]

[1, 2]

. Dictionaries

 Dictionaries are mutable

 If a key is used, which is already present, the item is overwritten
dl["testl"] = 3+4]j

dl

{'testl': (3+4j), 12: [1, 2], 'test2': 'Hello'}

 If a key is used, which is not present yet, a new item is created

dif(-1,)] = 12
dl

{'testl': (3+4j), 12: [1, 2], 'test2': 'Hello', (-1,): 12}

* Elements can be deleted by the del statement

del dl["test2"]

dl

{'testl': (3+4j), 12: [1, 21, (-1,): 12}

. Dictionaries

* The in operator can be used to check the
presence of a key

* Trying to access a non-existing key leads to
an error

'testl' in dl
True

"missing" in dl
False

dO["missing"]
.. KeyError: 'missing

* The get() method can be used to obtain an item or a default value if the key is not found

default = -1
key = "missing"

value = dO0.get(key, default)

if key in dO:

value = dO[key]
else:

value = default

. Dictionaries as iterators

 Dictionaries return their keys one by one:

dd = {12: [1l, 2], 'testl': 3.2, (-1,): True} key: 12
for key in dd: key: (-1,)
print(f"key: {keyl}") Key: testl

* An iterator over dictionary values can be obtained by the values() method

for val in dd.values(): value: [1, 2]
print(f"value: {val}") value: True
value: 3.2

* An iterator over key, value tuples can be obtained by the items() method:

for key, val in dd.items(): 12: [1, 2]
print(f"{key}: {val}") (-1,): True
testl: 3.2

. Creating dictionaries

* From a dict-literal

dd = {3.2: 'hello', 'a': 1}

* From an iterable containing (key, value) tuples

dict([('a', 1), (3.2, 'hello')])

* From a dictionary comprehension

{3.2: 'hello', 'a': 1}

{3.2: 'hello', 'a': 1}

filtering is optional

{keyexpr: valuexpr for itervar in iterator 1if éondition}

nums = [1, 3, 2, 9, 8, 3]

oddsquares = {num: num**2 for num in nums if num % 2 == 1}

{1: 1, 3: 9, 9: 81}

7

. Sets

e Sets contain only keys (like dictionaries), but
no values

Sets are mutable
All members must be of inmutable type

Every key (element) is unique and occurs
only once

Elements can be added by the add() method

Adding an already existing element to the set
leaves it unchanged:

= {"test", 12, -3.6, (1,2)}
sl
{(1, 2), 12, -3.6, 'test'}
sl.add(True)
sl
{(1, 2), True, 12, -3.6, 'test'}
sl.add('"test")
sl
{(1, 2), True, 12, -3.6, 'test'}

. Sets

* Elements can removed by the remove() method

* The In operator can be used to check the
presence of an element

sl.remove(-3.6)
sl

{(1, 2), True, 12, 'test'}
sl

{(1, 2), True, 12, 'test'}
12 in sl

True

13 in sl

False

. Sets as iterators

e Sets return their elements one by one, but the order is undetermined:

sl = {True, 12, 'test', (1, 2)} = * Item: (1, 2)

for item in sl: Item: True
print('Item:"', item) Item: 12

Item: test

10

. Creating sets

* From a set-literal

st = {1, 9, (3, 4), False, 8.2} {1, 9, (3, 4), False, 8.2}

* From an iterable containing (key, value) tuples

set([1l, 9, (3, 4), False, 8.2]) {1, 9, (3, 4), False, 8.2}

* From a set-comprehension fiering IS optional

{expr for itervar in iterator 1f condition}

nums = [1, 3, 2, 9, 8, 3]
oddsquares = {num**2 for num in nums if num % 2 == 1}

{1: 1, 3: 9, 9: 81}
11 B

. Containers - overview

Lists

e Ordered

* Elements indexed by sequential integer
(position)

* Index of a given element might change when
other elements are inserted/deleted

e Fast O(1) access by index
e Slow O(N) access by value

Dictionaries

* Unordered (ordered for Python > 3.7)

Elements indexed by key (arbitrary inmutable
object)

Index of given element remains unchanged
when other elements are inserted/deleted

Fast O(1) by key
Slow O(N) access by value

Sets

* Unordered
* Elements are unigue

e Fast O(1) access for checking element
presence

12

. Containers - access times

Note: choice of the container type might seriously affect performance

import random
MAX NUM = 10000000

random list = [random.randint(0, MAX NUM — 1)
for 1n range(MAX NUM)]
random set = set(random list)

%stimeit
MAX NUM in random list

o
N

>

compare
execution
timesl!

%stimeit
MAX NUM in random set

13

. Comparing containers

* Equality of containers can be checked with == and != operators
* Two containers are equal, if all elements and their keys/indices are equal

{'keyl': 1, 'key2': 2} == {'key2': 2, 'keyl': 1} True
{'keyl': 9, 'key2': 2} == {'key2': 2, 'keyl': 1} False

* Ordered (sequence) types (lists, tuples, but not dicts) can also be compared by >, >=, <, <=
 The comparison is done component-wise

* The first non-matching component (1, 2, 3) > (1, 2, 4) False
determines the relation (9, "ahoi") > (6, "hello") True
* The same ordering rules are applied in 11 = [(9, "ahoi"), (6, "hello")]
internal routines, like sorting: 11l.sort()
1l

[(6, 'hello'), (9, 'ahoi')]

14

. Some string methods

split(separator)

e Splits a string into pieces using a given
delimiter

* If no delimiter is specified, the string is split
by any whitespace characters (space, tab,
newline)

join(iterator)

* Joins the elements of the iterator into a string
using the string as delimiter

» All elements returned by the iterator must be
strings

"a,b,c,d".split(",")
[Ial’ IbI’ ICI’ Idl]

"One short line.\nOne more.".split()
['One', 'short', 'line.', 'One’,
‘more. ']

", ".join(["wordl", "word2", "word3"])
'wordl, word2, word3'

15

. Some string methods

lower(), upper()

* Converts all characters in a string to
lower/upper case

Istrip(), rstrip(), strip()

* Removes whitespace characters from left,
right and both sides of a string

"Word".lower()
‘word'
words = ["Apfel", "Birne"]

[word.lower() for word in words]

['apfel', 'birne']

" word ".lstrip()"
‘word '

" word ".rstrip()
' word'

" word ".strip()
‘word'

16

. Some string methods

replace() txt = "However, the sky was dark."
» Replaces all occurances of a substring with txt.replace("was", "is")
a given replacement ‘However, the sky 1s dark.'

txt.replace(",", "")
‘However the sky was dark.'

* The result of all string methods is always a new string (strings are immutable)
* If the result should be manipulated further by a string method, the methods can be “chained”

txt2 = txt.replace("was", "is")
txt new = txt2.replace(",", "")
txt new = txt.replace("was", "is").replace(",", "")

For further sting methods, see the Python Library Docs (String methods)
For non-trivial replacements regular expressions might be more suitable 17

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/re.html

Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

