
File I/O & Plotting

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

2

Outline

● Reading and writing files

● Plotting with matplotlib

You might need to install matplotlib and scipy in your Miniconda installation to try the examples

conda install matplotlib scipy

3

File I/O workflow

● Open file
● Do read/write operations
● Close file

fp = open("test.txt", "r")
txt = fp.read()
fp.close()

with open("test.txt", "r") as fp:
 txt = fp.read()
print("File closed automatically")

● The closing of a file is optional
(although recommended)

● Using context manager blocks by
with … as …

the file can be closed automatically
● File closed upon exiting the context manager

block

4

Reading text from a file

● Iterating over file handler returns the lines in
the file as strings (including the newline
character a the line ends):

for line in fp:
 print(line)

● The readlines() method returns a list of the
lines in the file:

lines = fp.readlines()
print(lines)

● The read() method returns the entire file
content as one string:

txt = fp.read()
print(txt)

● The readline() method returns the next line
in the file (and empty string if all lines had
been read):

line = fp.readline()
while line:
 print(line)
 line = fp.readline()

with open("test.txt", "r") as fp:
...

5

Writing text to a file

● The write() method writes a given string
into a file

with open("test.txt", "w") as fp:
...

fp.write("Line 1\n")

lines = ["Line1\n", "Line2\n"]
fp.writelines(lines)

lines = ["Line1\n", "Line2\n"]
for line in lines:
 fp.write(line)

lines = ["Line1", "Line2"]
fp.write("\n".join(lines))

● The writelines() method writes a list of
strings into a file

equiv.

equiv.

6

Reading / writing arrays

● Numpy/Scipy have special routines to read/write data arrays in text form (and also in other formats)

numpy.loadtxt() Reads data from a file into an array

numpy.savetxt() Writes array data into a file

data = np.loadtxt("test.dat")
data

array([[1., 2.],
 [3., 4.]])

Some comment
1 2
3 4

test.dat:

data2 = np.array([1, 2, 3])
np.savetxt("test2.dat", data2) 1.000000000000000000e+00

2.000000000000000000e+00
3.000000000000000000e+00

test2.dat

7

Path manipulation (os.path)

os.path module
● Module with very helpful functions for file name and path manipulations
● os.path.join(): Joining path names:

import os.path

directory = "schroedinger/harmonic"
fname = "energies.dat"
fname_full = os.path.join(directory, fname)
fname_full
'schroedinger/harmonic/energies.dat'

See also: os.path module documentation

https://docs.python.org/3/library/os.path.html

8

Path manipulation (pathlib)

pathlib module
● Object oriented path handling methods
● Path object offers methods and overriden operators to query and manipulate paths

from pathlib import Path

directory = Path("dir1/dir2") PosixPath('dir1/dir2')

fname = "data.dat" 'data.dat'

fname_full = directory / fname PosixPath('dir1/dir2/data.dat')

Path-object

String

● Path object can be used in the open()
statement instead of string file name

file = Path("test.dat")
with open(file, "r") as fp:
 fp.read()

See also: pathlib module documentation

https://docs.python.org/3/library/pathlib.html

9

Plotting with matplotlib

● Fully object oriented interface (should be favored)
● Matlab-like simplified interface with global state

Matplotlib interfaces

● Embedding plots into the IPython/Jupyter notebook

%matplotlib inline

Matplotlib render engines

● Showing plots in separate windows (when using from script or from IPython-console
● Creating graphical files (pdf, jpg, etc.)

In JupyterLab this is already the default

10

Self-containing plotting example

import numpy as np
import matplotlib.pyplot as plt

xx = np.linspace(0.0, 4.0 * np.pi, 200, endpoint=True)
y1 = np.cos(xx)
y2 = np.sin(xx)

fig, ax = plt.subplots()
ax.plot(xx, y1, color='red', linewidth=1.0, linestyle="--", label='cos(x)')
ax.plot(xx, y2, color='blue', linewidth=1.0,linestyle="-", label='sin(x)')
ax.legend()
plt.show() Render plot/figure (optional in JupyterLab)

Create legend box

Plot curves through given x/y values

Create Figure and Axes objects (multiple subplots possible)

Generating x/y values

● If you do not use plt.show() in Jupyter,
append semicolon (“;”) to last line of the cell
to suppress additional non-graphical output

● If you use a GUI-backend, you can also use
fig.show() to render a figure

11

Self-containing plotting example

12

Figure and Axes objects

ax.xaxis.set_ticks_position('top')
ax.yaxis.set_ticks_position('right')
ax.spines['top'].set_position(('data', 0))
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')

● An Axes-object instance represents one plot within the figure
● Axes-object enables very detailed tuning of the resulting plot

● A Figure object instance represents the figure
● Figure objects enables to manipulate the global

figure parameters or to execute global actions

fig.set_size_inches(10, 8)
fig.set_dpi(300)

fig.savefig('plot.pdf')

Figure

Axes

13

Mulitple subplots

fig, (ax1, ax2) = plt.subplots(2, 1)

ax1.plot(xx, y1, color='red', linewidth=1.0, linestyle="--", label='cos(x)')
ax1.legend()

ax2.plot(xx, y2, color='blue', linewidth=1.0,
 linestyle="-", label='sin(x)')
ax2.legend()

plt.show()

● The subplots() command can create multiple subfigures
● It returns individual Axes objects (one for each subfigure)

Two rows, one column (2 figures)

14

Rendering TeX within plots

ax.set_xticks(
 [0.0, np.pi / 2, np.pi, 3 * np.pi / 2],
 [r'0.0', r'$\frac{\pi}{2}$', r'π', r'$\frac{3\pi}{2}$']
)

● Matplotlib can render TeX sequences in plots
● TeX-sequences should be delimited by $
● It is advisable to put TeX-sequences into

raw-strings (r’something’)
● In raw-strings, backslashes are interpreted

literally and not as special Python commands
(e.g. \n as “\” “n” and not as newline)

● Useful when passing backslash commands to
various enginens (TeX-sequences in
Matplotlib, regular expressions, ...)

15

Further useful Axes methods

ax.set_xlim(), ax.set_ylim() Setting/Querying x/y limits

ax.set_xticks(), ax.set_yticks() Setting customized ticks (and tick labels)

ax.annotate() Write text into the plot

ax.plot() Curve plot

ax.scatter() Scatter plot

ax.bar() Bar plot

ax.contour() Contour plot

ax.imshow() Bitmap image

ax.pie() Pie charts

ax.quiver() Quiver plots

:

● Various excellent tutorials on Matplotlib available
● See for example Matplotlib Quick Start Guide or Matplotlib: Plotting (in Scipy Lecture Notes)
● Some tutorials (e.g. Scipy-lectures) use the global interface access (easy to convert)

https://matplotlib.org/stable/tutorials/introductory/quick_start.html
https://scipy-lectures.org/intro/matplotlib/index.html
https://scipy-lectures.org/index.html

Have fun!

Next time we will need:
● A proper Python source code editor (e.g. Visual Studio Code)
● Git (can be installed via Conda)

https://code.visualstudio.com/
https://git-scm.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

