
Further Git features

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

2

Outline

● Further Git features
● Hosting Git-repositories

3

Rename files

● Rename a file under version control:

git mv README README.txt
git status
On branch main
Changes to be committed:

renamed: README -> README.txt

git commit -m "Add .txt extension to readme file"

● Corresponding file in working directory will be renamed immediately
● The name change must be committed like any other change

4

Delete files

● Delete (remove) a file under version control

git rm unnecessary_file
git status
On branch main
Changes to be committed:

deleted: unnecesary_file

git commit -m "Delete unnecessary file"

● Corresponding file in the working directory will be deleted immediately
● The removal must be committed like any other change
● The file will be not present in future revisions, but stays part of the previous commits!

5

Investigating changes

● Changes between working copy and last
checked in / staged version

git diff README.txt
diff --git a/README.txt b/README.txt
index 8eab0a7..770eee5 100644
--- a/README.txt
+++ b/README.txt
@@ -1,5 +1,5 @@
-**********
-Linsolvers
-**********
+*********
+Linsolver
+*********

Lines removed

Lines added

● If no file name is specified, all changes in all
version controlled files are shown

git diff

● Changes between two committed
revisions using revision hashes

git diff 04d386 2a3186
-- README.txt

● The difftool sub-command calls the default
diff-viewer (kdiff3, meld) to visualize changes

git difftool
Viewing (1/1): 'README.rst'
Launch 'kdiff3' [Y/n]?

Optional, if missing
changes in all files shown

6

Discard changes in working copy

git status
[...]

modified: README.txt

no changes added to commit (use "git add" and/or "git commit -a")

git restore README.txt
git status
[...]
nothing to commit, working tree clean

● Set working directory back to last committed / staged version:

Overwrites working copy!

7

Unstage files

git status
On branch main
Changes to be committed:

modified: README.txt

git restore --staged README.txt

git status
On branch main
Changes not staged for commit:

modified: README.txt

● Staged files can be unstaged, if they should
not be part of the next commit

● Corresponding file in the work directory is not
affected by the opertation

8

Overview: Git file transfer commands

Working copy Stage / Index Repository (local)

git add

git commit

git restore --staged

git restore

git restore

(if stage has no changes)

(if stage has changes)

(if stage has changes)

9

Switch to an earlier version

git switch --detach 2a31862
HEAD is now at 2a31862 Add readme file

git status
HEAD detached at 2a31862

● Switching to earlier commit (by specifying its hash value)

● You have to change back to the current version (or to create a branch) to commit any changes

git switch main
Switched to branch 'main'

HEAD Points to last commit in the repository, next commit will be attached to this commit

Detached HEAD Points to an earlier commit, no new commit can be appended
(unless a new branch is created from this point)

10

Tagging versions

● Commits with special importance (e.g. release) can be tagged
● Annotated tags are commited with a log-message
● By default the last checked in commit is tagged

git log --oneline
7d8cf66 (HEAD -> main, origin/main) Add readme and .gitignore
ddd085a Start linsolver project with stub files

git tag -a v0.1

git log --oneline
7d8cf66 (HEAD -> main, tag: v0.1, origin/main) Add readme and .gitignore
ddd085a Start linsolver project with stub files

● Tag names can be used instead of revision
hashes in git commands git diff 04d3866 v0.1

11

Git aliases

● Aliases help to abbreviate often used git commands and options

git config --global alias.ci commit
git config --global alias.sw switch
git config --global alias.swd "switch --detach"
git config --global alias.st status
git config --global alias.gdiff difftool

● If an alias is used, the corresponding command / options will be substituted

git ci -m "Add quick changes"
git swd 2a31862
git st
git gdiff README.rst

Please create
these aliases for
your account,
since the
following
examples will
make use of
them!

12

Graphical git-viewers

● Several graphical git-clients
exist to visualize development
history:

qgit &

13

Tracking remote repositories

● Remote repository must be cloned first to create a local git repository

git clone https://github.com/SciProBA/linsolver.git
Cloning into 'linsolver'...

● Remote repository will be associated with the new local repository (under then name “origin”)

git remote -v
origin https://github.com/SciProBA/linsolver.git (fetch)
origin https://github.com/SciProBA/linsolver.git (push)
git status
On branch main
Your branch is up to date with 'origin/main'.

● Recent changes in the remote repository can be pulled

git pull
Updating ddd085a..7d8cf66

Note: This only works without side-effects, if
the local repository was not modifed apart
of “git pull” calls.

https://github.com/SciProBA/linsolver.git

14

Some further git-notes

● Read the manual for detailed git options
● You should commit after each non-trivial change of the project.

Rule of thumb: It should be easy for other developers to follow and understand the changes of a
commit.

● One commit should always contains logically related changes.
● Version history is stored in the .git sub-directory. If it is copied with the project, the version history is

copied as well.
● Git commands must be executed in the project directory or in a subdirectory of it.
● If no files are specified, git commands have the entire project (the files which are already under

version control) as target
● Revision hashes are global: They represent the status of all files in the project to a given time.

15

Hosting git repositories

● Raw Git repositories can be easily hosted on any webserver
● Hosting Git repositories with user friendly web interfaces is also possible, but more complex

(e.g. running a GitLab server)
● Several companies offer free of charge git repository hosting (with some constraints):

● GitHub (Microsoft): https://github.com
● GitLab (GitLab Inc.): https://gitlab.com
● Bitbucket (Atlassian): https://bitbucket.org

See https://github.com/SciProBA/linsolver for an example …

https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://github.com/SciProBA/linsolver

Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

