
Exceptions & API documentation

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023


2

Outline

conda install sphinx

You might need to install some Conda packages to try the examples in this lecture:

● Exceptions

● Extracting API documentation via Sphinx

On Linux make sure, that the “make” tool is installed on your system (probably it is already)



Exceptions



4

Exceptions

● Exceptions signalize errors during code executiong
● If an unexpected error happens which Python can not 

(or does not want to) handle, an exception is raised

Traceback (most recent call last):
  File "test.py", line 2, in <module>
    int(mystr)
ValueError: invalid literal for int() with base 10: 'ab'

mystr = "ab"
int(mystr)

Exception class Error message

Where did the error occur?

● Exceptions are part of a class hierarchy
● Exception class indicates the kind of error 

occurred.



5

Call stack trace

Traceback (most recent call last):
  File "test.py", line 4, in <module>
    convert_to_int("a")
  File "test.py", line 2, in convert_to_int
    return int(string)
ValueError: invalid literal for int() with base 10: 'a'

def convert_to_int(string):
    return int(string)

convert_to_int("a")

● If the exception is raised within a function, the exception contains the entire call 
stack trace information (how this point of code execution has been reached)

● The most recent call is shown last



6

Handling exceptions

fname = "missing_file"
with open(fname, "r") as fp:
    txt = fp.read()

Traceback (most recent call last):
  File "...", line 2, in <module>
    with open(fname, "r") as fp:
FileNotFoundError: [Errno 2] No such file or directory: 'missing_file'

try:
    with open(fname, "r") as fp:
        txt = fp.read()
except FileNotFoundError:
    print(f"Could not open {fname}")
    # Recover here or exit

● A robust program should handle exceptions which can be expected

Could not open missing_file



7

Handling exceptions

● Exception can be caught and processed with the try … except … clause

try:
    fp = open(fname, "r")
except FileNotFoundError:
    print(f"Could not open file {fname}, using default content")
    txt = "default text"
else:
    txt = fp.read()
    fp.close()
    print("File {fname} succesfully read".format(fname))

● If exception is raised by any statement in the 
try block, it is compared with the exceptions 
in the except clauses

● Block of first matching exception will be 
executed

● If no exception matches, program stops due 
to unhandled exception

● The optional else block is executed, if no 
exception occured



8

Handling exceptions

● The except clause can obtain the exception instance as variable for further inspection

try:
    fp = open(fname, "r")
except FileNotFoundError as exc:
    print(f"Input file {fname} not found")
    print(f"Exception as string: {exc}")
    print("Exception arguments:", exc.args)
else:
    print("File {} read".format(fname))

● Number and type of exception arguments are exception dependent

Exception arguments

Exception as string 
(error message)

Instance variable

Input file missing_file not found
Exception as string: [Errno 2] No such file or directory: 'missing_file'
Exception arguments: (2, 'No such file or directory')



9

Handling exceptions

try:
    fp = open(fname, "r")
except FileNotFoundError:
    print(f"Input file {fname} not found")
except PermissionError:
    print(f"No read permission for input file {fname}")

● A try … except … construct may contain several except claues
● If an exception is raised, the first matching except clause will be executed

● There will be maximally one except clause executed.



10

Exception class hierarchy

try:
    fp = open(fname, "r")
except OSError:
    print("Could not open file")
    print("File not present or present but not readable")

OSError

FileNotFoundError PermissionError

● Exceptions are organized in a class hierarchy
● More specific exeptions (children) inherit from more general exceptions 

(parents)

● If an exeption appears in an except clause, it handles the exception itself or any 
of its descendants lower in the class hierarchy

TimeoutError

parent

children



11

Exiting gracefully via sys.exit()

● A script can be exited via sys.exit()
● The argument of exit is given to the operating system and can be used there to take action 

depending on the exit code

import sys

try:
    with open('input.dat', 'r') as fp:
        content = fp.read()
except OSError:
    print("Could not read input file")
    print("Exiting...")
    sys.exit(1)

● Only the highest level main program/scriopt should call exit, never functions in a module



12

Raising an exception

● Your library can signalize irrecoverable errors by raising exceptions
● You have to pass an initialized exception to the raise command
● You can raise Pythons built-in exceptions, if appropriate.
● Most exceptions in Python accept the error message as only argument.

if abs(diagelem) < TOL:
    msg = "Singular matrix"
    raise ValueException(msg)

● It is also possible to define your own exceptions via inheritance:

class LinAlgError(Exception):
    """Signalizes linear algebra problems (e.g. linear dependence)"""

User exceptions should be derived from the Exception class



13

Testing exception in pytest

● Pytest can test, whether an exception had been raised.
● Code which is supposed to raise an exception must be embedded in a context manager 

(with construct)
● The context is created by the pytest.raises() function, which takes the exception type it 

should look for

def test_passes_if_exception_is_raised():
    with pytest.raises(ValueError):
        gaussian_eliminate(aa_singular, bb)

● The test passes, if the specified exception had been raised during the 
execution of the context, otherwise it fails.

Be sure to test only for the single specific exception, 
you expect to be raised in a given unit test!



API documentation



15

API documentation

● All public routines of your project
● They could be called by other projects / scripts by importing modules from this 

project (reusability!)

Application Programming Interface (API)

● Description of the purpose and input/output arguments of the API
● In Python the module/function doc-strings should be used to contain the API-

documentation

API-documentation

● Documentation is extracted from the source code
● Generated documentation independent from source code (e.g. HTML-pages)
● Modules can be reused without knowing the internal code details

Extracting API-documentation



16

Extracting API documentation

Sphinx documentation system

● Suitable for simple code related documents (e.g. user manual, reference manual, etc.)
● Can be used to extract API-documentation from doc-strings
● De-facto standard tool in the Python-world (all documentation on python.org is written using Sphinx)
● It uses the reStructured Text (RST) format



17

ReStructured Text in a nutshell (1)

● HTML/TeX-like formatting language using mostly picturesque notation

************
Some chapter
************

First subsection
----------------

This is *emphasized (italic)* and **bold**.

Here we use a TeX equation: :math:`E = mc^2`

First section
=============

Bulleted list:

* First bullet item

* Second bullet item

Enumerated list:

1. First enumerated item

2. Second enumerated item

Decorator must be as long as title



18

ReStructured Text in a nutshell (2)

We include a code example::

    print("Hello, World!")

Snippet above will be rendered as code

.. toctree::
   :maxdepth: 2

   api

Watch out for 
correct 

indentation!

● Quick reStructuredText
● The reStructuredText Cheat Sheet
● A ReStructuredText Primer

See also

● Similar to Python, indentation is part of the ReST-language semantics

Special environment for specifying table of content (toc)

Includes api.rst into the document and lists its sections in the toc

● Read the documentation for all available 
feature of ReST (quite powerful)

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt
http://docutils.sourceforge.net/docs/user/rst/quickstart.html


19

Extracting API documentation

mkdir docs
cd docs
sphinx-quickstart

Take default value 
wherever possible

import os
import sys
sys.path.insert(0, os.path.abspath('..'))

extensions = [
    'sphinx.ext.autodoc',
    'sphinx.ext.napoleon',
    'sphinx.ext.mathjax',
]

● Edit generated conf.py file

● Create a subfolder docs/ in the project directory
● Set up a sphinx documentation project in it

Ensures that sphinx finds Python 
module files in parent folder when 
extracting API-documentation

Activate some  
extensions

Automated API-extraction

Doc-strings in Google/Numpy-format

Render TeX in HTML with MathJax



20

Extracting API documentation

#########
Linsolver
#########

.. toctree::
   :maxdepth: 2

   api

*************
Linsolver API
*************

.. automodule:: solvers
   :members:

index.rst api.rst

● Edit generated file index.rst and create new file api.rst in the docs folder:

● Extract documentation and convert to HTML-format

make html

Build finished. The HTML pages are in _build/html.

Generates automatic documentation for all 
members of the solvers module

./make.bat htmlLinux Windows



21

Visualizing API documentation 

● Open the _build/index.html file in a web-browser

firefox _build/index.html Linux



22

Some Sphinx-notes

● Sphinx is optimal for small and middle size documents, where type setting is not too complicated
● Sphinx has several output format beside html (LaTeX, PDF, etc.)

● Put the Sphinx source and configuration files of your project under 
version control, but not the _build folder

cd docs
git add api.rst conf.py index.rst make.bat Makefile _static/ 
_templates/

● Add the Sphinx build folder to the projects .gitignore file

__pycache__
docs/_build

.gitignore



Have fun!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

