Type hints & Git workflow via git hosting

Balint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

—aBCCMS Universitat

Center for . Computational Materials Science Bremen

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

. Outline

* Type hints

* Git workflow with remote hosting

Type hinting

. Type hinting

* Python allows for annotation of variables

* Annotation information can be used by IDE and tools to check type-consistency
* Annotations are not evaluated at run-time (no type safety)

def fibonacci(nterm: int, order : int

2) -> int:

return num

def fibonacci(nterm: int, order : int 2) => List[int]:

return fibolist

def print hello(name: str) -> None:

See also
* Type hinting cheat sheet of MyPy

4 B

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Multiple repositories, multiple branches

. Remote git-hosting

Public git hosting sites use the “fork-pull-push” workflow
Similar to “branch & merge in two repositories”
Local repository is “published” via push to public hosting site

Changes from other repositories are imported via pulls from
the public repositories at the hosting site

Upstream repository Contributors repository
fork
>]
Cloud Upstream |« Contrlputors
repository > I‘epOSItOI‘y
pull
push pulli push
Upstream Contributors
Local repository repository Local
machine machine

. Authentication via ssh

Generate ssh key-pair (choose a proper passphrase!)

ssh-keygen <«——— Stores ssh key- id rsa Private key (never give it away!!!)

pair in .ssh/ id rsa.pub Public key (put on the remote host)

Register the public part of your SSH-key on the remote Git hosting service

GitHub: Settings / SSH and GPG keys / New SSH key

* Make sure, ssh-agent starts automatically
* Windows (see next slide)
* Linux / macOS: very likely, this is already set up out of the box

Unlock your key for ssh-agent

ssh-add You only have to enter your passphrase
once, ssh-agent authenticates you
whenever needed 7

. Autostarting ssh-agent in Git-Bash (Windows)

env=~/.ssh/agent.env .mmhm\\
agent load env () {
test -f "$env" && . "$env" >| /dev/null

}
agent start () {

umask 077

ssh-agent >| "$env" Copy & paste

||$envll >| /dev/nu'L'L this into the
~l.bashrc file

}
agent load env l
agent run state=$(ssh-add -1 >| /dev/null 2>&1; echo $7) ssh-agent should

if [! "$SSH_AUTH_SOCK"] || [$agent_run_state = 2]; then | Startautomaticaly

when you open
agent start GitBash terminal

fi
unset env _/

. Create new repository (Upstream)

* Create new repository locally (local repository) and make first commit

mkdir greetingdemo
cd greetingdemo
git init

git add ..
git commit

* Create repository on Git hosting server (remote repository) Registers remote repository as “origin’

* Connect local repository with remote repositor

git remote add origin‘&i%@github.com:USERNAME/greetingdemo.git

git remote -v <« Lists registered remote repositories

* Push local copy to remote repository “origin”

git push -u origin main -u: connect main permanently with origin/main

. Fork & clone existing repository (Contributor)

* Fork repository of other user on the Git hosting server
(creates a copy on the hosting server, copy remains associated with upstream repository)

* Clone repository from your namespace

git clone git@github.com:YOUR USERNAME/greetingdemo.git

* Register upstream repository (e.g. for keeping track of updates on upstream/main)

git remote add upstream git@github.com:UPSTREAM USER/greetingdemo.git
git remote -v

10

. Developing a feature (Contributor)

* Create feature branch in your local repository (e.g. “docs”)

Implement your feature (e.g. add readme)

When finished, push your branch to your remote repository

git push origin BRANCH NAME

Make a pull request (merge request) to upstream/main to incoprorate your changes

You can add further commits to this branch during review and push it as above

11

. Delete merged branch (Contributor)

* Once feature had been merged to upstream/main, feature branch should be deleted

git switch main
git branch -d docs «—
git push --delete origin doc

Deletes local branch

Deletes remote branch

12

. Synching local main with upstream/main (Contributor)

* Contributors main branch should always be a 1-1 copy of upstream/main

git switch main
git pull --ff-onlxhgpstream main

Ensures, that pull is only successful, if local
main branch has not been manipulated...

* Itis a good idea to configure git globally to only allow fast-forward pulls

[pull] ~/.gitconfig
ff = only

™

Makes --ff-only the default behaviour at pulls

 After bringing your local main branch up to date, you might want to push that to your remote repo:

git push origin main

13

. Contributors workflow (summary)

Fork / Pull / Push model

* Keep up to date with current changes on main git switch main

git pull --ff-only upstream main

Create feature branch git switch -c BRANCH NAME

Develop feature, push branch git push origin BRANCH NAME

Make pull / merge request PULL/MERGE REQUEST

When feature had been merged, delete branch : : :
git switch main

git branch -d BRANCH NAME
git push --delete origin BRANCH NAME

14

. Upstream developers workflow

Workflow for upstream developer is basically identical to contributors workflow

* Keep up to date with current changes on main git switch main

git pull --ff-only origin main

Create feature branch git switch -c BRANCH NAME

Develop feature, push branch git push origin BRANCH NAME

Make pull / merge request PULL/MERGE REQUEST

When feature had been merged, delete branch : : :
git switch main

git branch -d BRANCH NAME
git push --delete origin BRANCH NAME

15

. Few random notes

* Repository can be made private, contributors must be then invited to the repository (they usually
gain write access to the repository then)

* If all developers have write access to the repository (small projects), the same repository might
contain all temporary feature branches (no forking necessary)

* Git hosting services also offer automatic testing / code checking, etc. (Cl — continuous integration)

Further reading:

* GitHub quickstart guide
* Any other GitHub/GitLab/Bitbucket tutorial
* Several projects have their own detailed Git-workflow guides (e.g. DFTB+ Git-workflow)

16

https://docs.github.com/en/get-started/quickstart
https://dftbplus-develguide.readthedocs.io/en/latest/gitworkflow.html

Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

