
Type hints & Git workflow via git hosting

Bálint Aradi

Course: Scientific Programming / Wissenchaftliches Programmieren (Python)

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

https://www.bccms.uni-bremen.de/people/b-aradi/wissen-progr/python/2023

2

Outline

● Type hints

● Git workflow with remote hosting

Type hinting

4

Type hinting

● Python allows for annotation of variables
● Annotation information can be used by IDE and tools to check type-consistency
● Annotations are not evaluated at run-time (no type safety)

● Type hinting cheat sheet of MyPy
See also

def fibonacci(nterm: int, order : int = 2) -> int:
 ...
 return num

def print_hello(name: str) -> None:
 ...

def fibonacci(nterm: int, order : int = 2) -> List[int]:
 ...
 return fibolist

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Multiple repositories, multiple branches

6

Remote git-hosting

Cloud Upstream
repository

Contributors
repository

fork

Local
machine

Upstream
repository

Upstream repository Contributors repository

pull push

Contributors
repository

pull push

pull pull

● Public git hosting sites use the “fork-pull-push” workflow
● Similar to “branch & merge in two repositories”
● Local repository is “published” via push to public hosting site
● Changes from other repositories are imported via pulls from

the public repositories at the hosting site

Local
machine

pull

7

Authentication via ssh

● Generate ssh key-pair (choose a proper passphrase!)

ssh-keygen Stores ssh key-
pair in .ssh/

id_rsa
id_rsa.pub

Private key (never give it away!!!)

Public key (put on the remote host)

● Register the public part of your SSH-key on the remote Git hosting service

Settings / SSH and GPG keys / New SSH keyGitHub:

● Make sure, ssh-agent starts automatically
● Windows (see next slide)
● Linux / macOS: very likely, this is already set up out of the box

● Unlock your key for ssh-agent

ssh-add You only have to enter your passphrase
once, ssh-agent authenticates you
whenever needed

8

Autostarting ssh-agent in Git-Bash (Windows)

env=~/.ssh/agent.env
agent_load_env () {
 test -f "$env" && . "$env" >| /dev/null
}
agent_start () {
 umask 077
 ssh-agent >| "$env"
 . "$env" >| /dev/null
}
agent_load_env
agent_run_state=$(ssh-add -l >| /dev/null 2>&1; echo $?)
if [! "$SSH_AUTH_SOCK"] || [$agent_run_state = 2]; then
 agent_start
fi
unset env

.bashrc

Copy & paste
this into the
~/.bashrc file

ssh-agent should
start automatically
when you open
GitBash terminal

9

Create new repository (Upstream)

● Create new repository locally (local repository) and make first commit

git remote add origin git@github.com:USERNAME/greetingdemo.git
git remote -v

● Create repository on Git hosting server (remote repository)
● Connect local repository with remote repository

mkdir greetingdemo
cd greetingdemo
git init
…
git add …
git commit ...

git push -u origin main

● Push local copy to remote repository “origin”

Lists registered remote repositories

Registers remote repository as “origin”

-u: connect main permanently with origin/main

10

Fork & clone existing repository (Contributor)

● Fork repository of other user on the Git hosting server
(creates a copy on the hosting server, copy remains associated with upstream repository)

● Clone repository from your namespace

git clone git@github.com:YOUR_USERNAME/greetingdemo.git

● Register upstream repository (e.g. for keeping track of updates on upstream/main)

git remote add upstream git@github.com:UPSTREAM_USER/greetingdemo.git
git remote -v

11

Developing a feature (Contributor)

● Create feature branch in your local repository (e.g. “docs”)
● Implement your feature (e.g. add readme)
● When finished, push your branch to your remote repository

git push origin BRANCH_NAME

● Make a pull request (merge request) to upstream/main to incoprorate your changes
● You can add further commits to this branch during review and push it as above

12

Delete merged branch (Contributor)

git switch main
git branch -d docs
git push --delete origin doc

● Once feature had been merged to upstream/main, feature branch should be deleted

Deletes local branch

Deletes remote branch

13

Synching local main with upstream/main (Contributor)

git switch main
git pull --ff-only upstream main

Ensures, that pull is only successful, if local
main branch has not been manipulated...

● Contributors main branch should always be a 1-1 copy of upstream/main

[pull]
 ff = only

● It is a good idea to configure git globally to only allow fast-forward pulls

~/.gitconfig

Makes --ff-only the default behaviour at pulls

● After bringing your local main branch up to date, you might want to push that to your remote repo:

git push origin main

14

Contributors workflow (summary)

Fork / Pull / Push model

git push origin BRANCH_NAME

git switch -c BRANCH_NAME

git switch main
git branch -d BRANCH_NAME
git push --delete origin BRANCH_NAME

● Create feature branch

● Develop feature, push branch

● Make pull / merge request
● When feature had been merged, delete branch

● Keep up to date with current changes on main git switch main
git pull --ff-only upstream main

PULL/MERGE REQUEST

15

Upstream developers workflow

Workflow for upstream developer is basically identical to contributors workflow

git push origin BRANCH_NAME

git switch -c BRANCH_NAME
● Create feature branch

● Develop feature, push branch

● Make pull / merge request
● When feature had been merged, delete branch

● Keep up to date with current changes on main git switch main
git pull --ff-only origin main

PULL/MERGE REQUEST

git switch main
git branch -d BRANCH_NAME
git push --delete origin BRANCH_NAME

16

Few random notes

● GitHub quickstart guide
● Any other GitHub/GitLab/Bitbucket tutorial
● Several projects have their own detailed Git-workflow guides (e.g. DFTB+ Git-workflow)

● Repository can be made private, contributors must be then invited to the repository (they usually
gain write access to the repository then)

● If all developers have write access to the repository (small projects), the same repository might
contain all temporary feature branches (no forking necessary)

● Git hosting services also offer automatic testing / code checking, etc. (CI – continuous integration)

Further reading:

https://docs.github.com/en/get-started/quickstart
https://dftbplus-develguide.readthedocs.io/en/latest/gitworkflow.html

Have fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

