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Figure 1: Left, TRANSIESTA memory for varying electrode Figure 2: DFT+TB calculation with an
(y-axis) and device size (z-axis). Right, TRANSIESTA time accurate DFT STM-tip which is con-
usage for equivalent systems. A linear scaling for constant nected to a TB parameterized infinite

electrode widths are found. graphene system to investigate the far
field currents. A 6-fold symmetry is
found.

T will present the recent development of N, > 1 electrode DFT/TB+NEGF simulations which enables
simulations of multiprobe physics. The specific implementation will be presented and the efficiency
and scalability of the code (TRANSIESTA) will be emphasized. The code implements hybrid parallelization
which easily enables efficient calculation of DFT systems with more than 10,000 orbitals under non-
equilibrium, see Fig. |1/ which shows the maximum memory usage with respect to system size (z-axis) and
electrode size (y-axis), left. The right shows the computation time of a single SCF with NEGF.

After introduction to TRANSIESTA we present results based on large scale 2D-graphene systems with
a Dirac Fermion microscope [3, [4]. Here we will show the extended capability of TBTRANS with many
custom parameters in the Hamiltonian; magnetic fields, complex absorbing potentials and p—n junctions.
The chosen boundary conditions have a large influence of the quantum mechanical calculations.

Lastly, a combined DFT+tight-binding calculation will be used to show the STM-tip far-field current
in infinite graphene structures, see Fig.[2] We use an accurate DFT description for the STM tip-like struc-
ture and transition to a DFT parameterized tight-binding model in the far field (3rd nearest neighbour
non-orthogonal model). Our findings substantiate and amend simpler tight-binding calculations.
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